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importance in the future projection estimations, and WRF 
shows better skill in simulating the annual mean precipita-
tion trend. However, there is overestimation of precipitation 
in Southeast China while negative one in the middle latitude 
of China in WRF simulation, which can be traced back to 
model bias in atmospheric circulation and water vapor trans-
portation in these regions. Several extreme climate indi-
ces are selected to further assess the model’s performance 
in simulating climate extremes, WRF can well reproduce 
the main features with better model skill compared with 
MIROC5. The better performance of WRF indicates the 
necessity of the dynamical downscaling technique and the 
robustness of regional climate simulation in future regional 
climate projection over China.

Keywords  Model evaluation · Regional climate models · 
China · Climatology and extremes

1  Introduction

Although China has the largest population, its agriculture 
land is limited. Due to the vulnerability of water resources 
in this region, climate change, particularly precipitation vari-
ation, is of essential importance (Vörösmarty et  al. 2000). 
Anomalies in precipitation play an important role in this 
agricultural and rapidly developing country. The increas-
ing demand of water resources due to the growing popula-
tion, rapid economic development, and extensive urbaniza-
tion indicates that China faces severe challenges in water 
resources at present and these challenges could be more seri-
ous in the future (Piao et al. 2010). Furthermore, extreme cli-
mates such as intense snowfall, heat waves, drought, flood-
ing, and freezing rain occur more frequently in the warming 
world, which brings large economic loses and economic 
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threats to China (Sun et al. 2010, 2011; Chen et al. 2013; Sun 
2014; Ding et al. 2008). Due to the severe freezing disaster in 
South China in 2008 (Chen et al. 2011), for example, more 
than 2 million homes or roofs collapsed in 20 provinces, 12 
million hectares of crops were damaged, and the economic 
losses were estimated at 151 billion Yuan (Hu et al. 2010). 
In addition, the severe drought event of 2009–2010 in south-
western China caused drinking water shortages for approxi-
mately 21 million people, and the economic losses reached 
nearly 180 billion Yuan (Yang et al. 2012). Recent observa-
tions indicate significant changes in precipitation over China. 
For instance, Sun and Ao (2013) suggested that winter pre-
cipitation and extreme precipitation are increasing in the 
warming environment in China. Wang and He (2013) found 
that the snowfall in Northeast China increased approximately 
20 % during 1986–2010 over Northeast China than that in 
1951–1985. The authors suggested it is associated to the East 
Asian winter monsoon; other studies have stressed the influ-
ence of Arctic sea ice (Liu et al. 2012a). Zhu et al. (2011) 
found that precipitation over East China increased in the 
Huang-Huai River region and decreased in the Yangtze River 
region during 2000–2008 in comparison to 1979–1999, 
which may be related to the decadal change of the Pacific 
decadal oscillation (PDO). The previous multidecadal vari-
ation in precipitation over China is associated with the East 
Asia monsoon system, which is a hybrid of tropical and sub-
tropical monsoons (Yang et al. 2014; Ding and Chan 2005), 
and the variation can also be related to the North Atlantic 
Oscillation (Sun and Wang 2012), El Niño Southern Oscil-
lation (ENSO; Fu et al. 2013; He and Wang 2013), anthro-
pogenic aerosols (Wang et al. 2013), the Indian Ocean, the 
Tibetan Plateau, and internal variability (Zhou et al. 2009). 
Thus, high-confident climate projection is quite important 
for China’s future development.

Coupled global climate models forced by projected green-
house gas and aerosol emissions in the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) are the primary tools 
for estimating trends and variability of future climate and 
extremes, and the results are used to evaluate future climate 
change under various representative concentration pathways 
(RCP) scenarios. Based on the results of CMIP5, several 
studies have evaluated the changes in precipitation, flood/
drought, and extreme climate events over China under dif-
ferent RCP scenarios (e.g., Xu and Xu 2012; Chen 2013; 
Chen et  al. 2013). These results enabled a more compre-
hensive understanding of the future climate under different 
scenarios from the latest generation of state-of-the-art global 
climate models (GCMs). However, the horizontal resolution 
of CMIP5 models spans from 100 to 300 km (Taylor et al. 
2011), which is coarse in resolving mesoscale or regional 
scale climate features. The World Climate Research Program 
(WCRP) recently initiated the coordinated regional climate 
downscaling experiment (CORDEX, Giorgi et  al. 2009), 

which provides high-resolution regional climate change 
projections on land areas worldwide by using regional cli-
mate models (RCMs). Endris et al. (2013) evaluated the per-
formances of RCMs from CORDEX in simulating rainfall 
over eastern Africa, it is found that most RCMs reasonably 
simulate the main features of the rainfall climatology, at the 
same time the analysis shows significant biases in individual 
models depending on sub-region and season; Vautard et al. 
(2013) evaluated the simulation of European heat waves, and 
found most models exhibited an overestimation of summer-
time temperature extremes in Mediterranean regions and an 
underestimation over Scandinavia even after bias removal, 
but a higher resolution reduced this deficiency; In North 
America, very high-resolution (4–12 km) dynamical down-
scaling simulations were conducted, and the RCMs shows 
quite good performances (Caldwell et  al. 2009; Gao et  al. 
2012a; Pan et  al. 2011; Martynov et  al. 2013). There were 
also dynamical downscaling simulations over East Asia, and 
the studies indicated that RCMs can reproduce the spatial 
distribution of mean climate and extreme climate events bet-
ter (Gao et al. 2008, 2011, 2012b; Yu et al. 2010; Wang et al. 
2011; Lee et al. 2014).

Most of the previous dynamical downscaling simula-
tions were based on CMIP3 outputs, which had coarser 
resolution and older emission scenarios, and they mainly 
focused on the temperature and precipitation climatology, 
therefore, the changes in extreme climate projected by high 
resolution regional climate models with newly developed 
CMIP5 outputs is especially meaningful over China con-
sidering its peculiarities and vulnerability. In this paper, 
historical (1946–2005) and future projection (2006–2100) 
simulations over China have been conducted using WRF 
model driven by the Model for Interdisciplinary Research 
on Climate version 5 (MIROC5) in the context of CMIP5, 
it contributes to the existing information on regional cli-
mate change over China by supplying with high resolution 
(30 km) simulations with newly-developed RCP of CMIP5, 
the simulation have been completed with WRF model 
which was not included in the aforementioned studies over 
China. In addition, this paper provides the evaluation of 
the performance of WRF model in simulating the climate 
extremes represented by indices as compared to GCM and 
observations, the indices are calculated with a consistent 
methodology of Expert Team on Climate Change Detection 
and Indices (ETCCDI) across all the datasets, which has 
not been included in previous research.  The primary objec-
tive of this paper is to identify the models’ performances 
over China by comparing the historical run with multi-
ple observation data, mainly focusing on climatology and 
extremes. The remainder of this paper is as follows: Sect. 2 
describes the models and the observation data and Sect. 3 
evaluates the model performance with the historical run. 
Finally, Sect. 4 concludes the study with a discussion.
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2 � Model, experiment design, and observation data

2.1 � Model description

The global coupled climate model used in this study is the 
MIROC5, which is developed on the basis of MIROC3.2, 
the atmosphere model is the Center for Climate System 
Research, University of Tokyo (CCSR)/National Insti-
tute for Environmental Studies (NIES)/Frontier Research 
Center for Global Change (FRCGC) AGCM, which is 
based on a global spectral dynamical core and includes a 
standard physics package. The ocean model is the CCSR 
Ocean Component Model (COCO), which includes a 
sea ice model. MIROC5 also couples a land model that 
includes a river module. Further details of MIROC5 have 
been reported by Watanabe et al. (2010).

The regional climate model used in this study is the 
WRF version 3.4, which is a mesoscale numerical model 
consisting of a model solver of fully compressible Eulerian 
and nonhydrostatic equations with a run-time hydrostatic 
option (Skamarock et al. 2008). The model uses a terrain-
following coordinate with the top of the model being a con-
stant pressure surface. The horizontal grid is the Arakawa-
C grid, and the time integration scheme in the model uses 
the third-order Runge–Kutta scheme. This model has been 
widely used in regional climate studies over China, and the 
studies indicated that the model can reproduce the main 
features of climate in this region well (Ge et al. 2013; Yang 
et al. 2014; Yu 2012).

2.2 � Experimental design

The main model configurations of WRF in the continuous 
integration are as follows. The microphysics are parameter-
ized by the Single-Moment 6-class Microphysics (WSM6) 
scheme including ice, graupel, and their associated pro-
cesses (Hong and Lim 2006); the radiation transfer schemes 
for longwave and shortwave are modeled by the National 
Center for Atmospheric Research (NCAR) Community 

Atmosphere Model (CAM 3.0), which can handle several 
trace gases and interacts with resolved clouds and cloud 
fractions (Collins et al. 2004); the surface layer is depicted 
by the Fifth-Generation Penn State/NCAR Mesoscale 
Model (MM5) Monin–Obukhov scheme (Skamarock et al. 
2008); the land surface process is modeled by the Noah 
land surface model with multiparameterization options 
(Noah–MP; Niu et al. 2011; Yang et al. 2011); the cumu-
lus convective precipitation is parameterized by the Kain–
Fritsch scheme (Kain 2004), and the planetary boundary 
layer is depicted by the Yonsei University scheme (Hong 
et al. 2006).

The WRF domain covers mainland China and the 
nearby regions with the spatial resolution of 30 km under 
the Lambert conformal map projection (Fig.  1). Valida-
tions that are more detailed will be presented for seven sub-
regions with various climate features, including Northeast 
China (NE), North China (NC), the Yangtze River Basin 
(YRB), Southeast China (SE), Southwest China (SW), 
the Tibetan Plateau (TP) and Northwest China (NW). The 
initial and boundary conditions for WRF were obtained 
from the MIROC5 historical and RCP60 experiments for 
1946–2100 in CMIP5 at a time frequency of 6 h. The code 
of WRF model was adapted to include the mixing ratio 
of greenhouse gas (GHG) for the new RCP scenario used 
in CMIP5. The results of 1986–2005 in the historical run 
were chosen as the present-day climatology, which is con-
sistent with the definition of the Fifth Assessment Report 
of the United Nations Intergovernmental Panel on Climate 
Change (IPCC AR5; IPCC 2013).

2.3 � Observation data and statistical methods

Due to uncertainties in the data sources and process-
ing algorithm, the observation products also have poten-
tial uncertainties; thus, they can provide only possibilities 
for the observational truth (Xu and Powell 2012). In this 
paper, we use multiple observation products to evaluate 
the model’s skill in simulating the surface air temperature, 

Fig. 1   Computation domain of 
WRF (within the outer black 
line) and seven sub-regions 
[Northeast China (NE), North 
China (NC), the Yangtze River 
Basin (YRB), Southeast China 
(SE), Southwest China (SW), 
Northwest China (NW), and the 
Tibetan Plateau (TP)], shading 
indicates the topography, and 
warm colors stand for higher 
elevation, six locations in China 
are labelled with number
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precipitation and extreme climate indices for 1986–2005 
in the historical run, namely the CN05 daily mean tem-
perature, daily maximum temperature, daily minimum 
temperature and daily precipitation data from China Mete-
orological Administration (CMA; Wu and Gao 2013), the 
University of East Anglia Climatic Research Unit (CRU) 
TS3 monthly temperature and precipitation data (Mitchell 
and Jones 2005), the Asian Precipitation–Highly Resolved 
Observational Data Integration Towards Evaluation of 
Water Resources (APHRODITE, hereafter APHRO for 
short) daily temperature and precipitation data (Yatagai 
et al. 2012), and the Global Precipitation Climatology Pro-
ject (GPCP) monthly precipitation data (Huffman et  al. 
2009). The CN05 product contains daily mean tempera-
ture, maximum temperature, minimum temperature, and 
precipitation at a horizontal resolution of 0.25° ×  0.25°, 
it is developed on the basis of more than 2,400 meteoro-
logical stations in mainland China. The CRU data contains 
global monthly temperature and precipitation at the reso-
lution of 0.5° × 0.5°. The APHRO product contains daily 
temperature and precipitation over Asia, and its resolution 
is 0.25° × 0.25°. The GPCP includes satellite–gauge com-
bination data starting from 1979, which contains only pre-
cipitation with a resolution of 2.5° × 2.5°. There are also 
other observation products over the regions of interest, such 
as the Tropical Rainfall Measuring Mission (TRMM; Huff-
man et  al. 2007) and the Climate Prediction Center mor-
phing method (CMORPH; Joyce et  al. 2004), however, 
these products do not cover the entire 1986–2005 period. 
In addition to the temperature and precipitation, we also 
use the wind from Climate Forecast System Reanaly-
sis (CFSR) data, which have a resolution of 0.5° ×  0.5° 
(Saha et al. 2010). The pattern correlation (PCOR), stand-
ard deviation (SD), model anomaly bias (BIAS) and root 
mean square difference (RMSD) are used to assess model’s 
performance.

3 � Results

3.1 � Temperature

Figure 2 illustrates the seasonal averaged temperature dur-
ing 1986–2005 for June–July–August (JJA) obtained from 
observations and model simulations. The CN05, CRU, and 
APHRO agree well with each other, and the observations 
indicate that the summer mean temperature decreases from 
south to north over China. The hot center appears in South-
east China, where the summer mean temperature ranges 
between 24 and 27  °C with the maximum temperature 
exceeding 27  °C in Hainan Island, the coastal regions of 
South China, and the middle reaches of the Yangtze River 
Valley. The cold center is located in the Tibetan Plateau, 

with a summer mean temperature lower than 3  °C due to 
its topography. MIROC5 captures the large-scale distri-
bution of summer mean temperature while fails to repro-
duce the regional features. For instance, the simulated hot 
center extends to the lower reaches of Yellow River Valley, 
which is approximately 5°N of the observation. In addition, 
MIROC5 also misses many details in regional scale, such 
as the low temperature in Tianshan Mountain in Northwest 
China. However, WRF gains many improvements com-
pared with MIROC5, and the simulation agrees with the 
observation better, particularly for the regional features in 
Southeast China, the Yangtze River Valley and Northwest 
China. For instance, WRF captures the temperature dis-
tribution over Sichuan Basin and Tarim Basin with better 
agreement with the observation. The correlation coeffi-
cients between observation and simulations are about 0.9 
for MIROC5 and 0.97 for WRF, which indicates that WRF 
has significantly better performance for the temperature 
simulations.

To assess the model’s ability in simulating the tempera-
ture variability over China, we calculated the standard devi-
ation of temperature for JJA during 1986–2005 (Fig.  3). 
Although there are differences among the observations, all 
of the observational products indicate that the variability of 
temperature increases from south to north. MIROC5 and 
WRF reproduce the spatial pattern of temperature variabil-
ity well, including the large variability in high latitude and 
the small one in lower latitude over China. WRF simula-
tion shows improvements mainly in regional scale, includ-
ing the regions of Southwest China and North China. How-
ever, both models indicate large variability over the Tibetan 
Plateau, which disagrees with the observation, these biases 
indicate challenges for temperature simulation over high 
topography regions, even for the high-resolution RCM 
simulations.

Table  1 shows the annual and seasonal mean PCOR, 
anomaly BIAS and RMSD over the entire China and the 
sub-regions between CN05 observation and the corre-
sponding model simulation. When we calculate the anom-
aly BIAS and RMSD, we first subtract the model’s clima-
tology (1976–2005) to remove the systematic model bias. 
The PCORs of MIROC5 for China and the sub-regions 
are approximately 0.9, indicating good performance in 
reproducing the spatial distribution of temperature. Higher 
PCORs of MIROC5 appear in the regions of Northeast 
China, North China, and Northwest China, whereas lower 
values appear in the Yangtze River Basin, the Tibetan 
Plateau, and Northwest China. WRF shows significant 
improvements with higher PCORs over all regions. The 
most obvious improvements appears in the Yangtze River 
Basin, the Tibetan Plateau, and Northwest China, which 
can be traced back to the weakness of MIROC5 in these 
regions. For anomaly BIAS and RMSD aspects, WRF also 
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shows improvements, which mainly appears in summer 
season. WRF’s performance is worse in the cold seasons, 
which was also reported by Liu et al. (2012b). The authors 
suggested that the decline may be related to the model’s 
deficiency in representing the snow feedback processes; 
however, further investigation is required to determine the 
mechanisms for such deficiency.

3.2 � Precipitation

3.2.1 � Model evaluation

Figure  4 compares the summer mean precipitation from 
observations and model simulations. The observations indi-
cate precipitation decreases from southeast to northwest 
over China. The maximum precipitation appears in South-
east China with values exceeding 800  mm, whereas the 
minimum precipitation is located in Northwest China with 
values less than 100 mm. However, some differences exist 

among the observations, particularly over Northwest China 
and the Tibetan Plateau, where meteorological stations are 
quite scarce. MIROC5 and WRF well reproduce the spa-
tial pattern of summer rainfall, although obvious overesti-
mations are observed in Southeast China. The correlation 
coefficient between observation (CN05/APHRO) for WRF 
is 0.86/0.85, while for MIROC5 is 0.85/0.84. The improve-
ment is due to the fact that WRF can capture more detailed 
rainfall features in regional scale due to its finer resolu-
tion. For example, the precipitation pattern, as well as the 
precipitation amount over Northwest China simulated by 
WRF agrees with CN05 and APHRO better. The false pre-
cipitation center over Sichuan Basin is obvious in MIROC5 
simulation, whereas WRF can improve it. In the southeast-
ern edge of the Tibetan Plateau, MIROC5 simulates much 
stronger precipitation than the observation, which may be 
related to the topographic effect. The Himalayas are much 
lower in the GCMs due to the coarse resolution, so the pre-
cipitation can penetrates into the Plateau (Gao et al. 2008). 

Fig. 2   Summer mean tem-
perature (units: °C) during 
1986–2005 from the a CN05, 
b CRU, c APHRO, d MIROC5 
and e WRF for June–July–
August (JJA), the correla-
tion coefficients between the 
simulations and the observation 
(CN05 and APHRO products 
are selected as the observation 
due to their high resolution) was 
labelled on the top-right of the 
figure, and asterisks indicate 
the significance level are higher 
than 90 %
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Due to the finer resolution, WRF can improve the situation 
with much better agreement with the observation.

Figure  5 shows the annual cycle of precipitation from 
observations and simulations. Good agreements are 
observed among the observations, which indicates the sea-
sonal features of more precipitation in summer and less in 
winter over China. MIROC5 and WRF capture the main 
features of seasonal variation, although overestimation is 
obvious throughout the year, especially in summer. Both 
model show the largest wet bias in Southeast China in sum-
mer, as shown in Fig. 4e, f. WRF shows better performance 
and less bias, particularly in the regions of North China, 
Northwest China, Southwest China, and the Tibetan Pla-
teau. In the regions of the Tibetan Plateau and Northwest 
China, annual precipitation variation and amount simulated 
by WRF are comparable with the observation.

We also compare the seasonal evolution of the rainfall 
belt in eastern China, which is closely associated with the 
East Asia summer monsoon and the drought/flooding in 

eastern China. Figure 6 illustrates the latitude–time cross-
section of the precipitation averaged over the regions of 
110°–125°E from the observations and model simulations. 
Similarities are observed in the observations, which indi-
cates that the rainfall belt shifts northward in April and 
reaches the Yangtze River Valley (approximately 30°N) 
in May before reaching North China in June and July and 
retreating in August. MIROC5 and WRF reproduce the 
rainfall evolution reasonably well; however, the overes-
timation of precipitation is obvious in South China. The 
intensity of the simulated rainfall in South China is much 
stronger, and the duration is longer than that of the obser-
vation. MIROC5 simulates stronger rainfall between 35°N 
and 40°N in June and July with values exceeding 7  mm/
day, whereas WRF improves the simulation and shows less 
model bias.

Figure  7 compares the probability distribution of pre-
cipitation from observations and simulations. For the tem-
poral averaged precipitation (Fig. 7a), large differences are 

Fig. 3   Same as Fig. 2, but for 
standard deviation of tempera-
ture, unit: °C
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Table 1   Spatial pattern 
correlation coefficient (PCOR), 
model bias (BIAS) and root 
mean square difference 
(RMSD) over China and 
sub-regions for annual and 
seasonal mean temperature 
between CN05 and MIROC5/
WRF simulation, the model 
climatology (1976–2005) was 
removed before the calculation 
of anomaly BIAS and RMSD, 
ANN stands for annual, MAM 
for March–April–May, SON for 
September–October–November, 
DJF for December–January–
February

All the correlation coefficients 
are statistically significant

PCOR Anomaly BIAS Anomaly RMSD

MIROC5 WRF MIROC5 WRF MIROC5 WRF

China

 ANN 0.94 0.98 −0.12 −0.08 0.7 0.7

 MAM 0.93 0.98 −0.29 −0.28 1.47 1.44

 JJA 0.92 0.98 0.06 0.0007 0.85 0.88

 SON 0.94 0.98 −0.01 0.03 0.92 1.0

 DJF 0.93 0.95 −0.17 −0.13 1.37 1.64

Northeast China (NE)

 ANN 0.96 0.96 −0.24 −0.26 0.61 0.61

 MAM 0.93 0.95 −0.53 −0.43 1.7 1.5

 JJA 0.93 0.96 −0.03 −0.05 0.88 0.88

 SON 0.97 0.98 −0.02 −0.06 0.96 1.26

 DJF 0.96 0.88 −0.39 −0.53 1.49 1.79

North China (NC)

 ANN 0.97 0.99 −0.14 −0.16 0.68 0.86

 MAM 0.95 0.98 −0.44 −0.54 1.55 1.8

 JJA 0.91 0.97 −0.06 −0.08 0.97 0.95

 SON 0.97 0.99 0.03 0.04 0.79 0.94

 DJF 0.98 0.98 −0.11 −0.11 1.18 1.8

Yangtze River Basin (YRB)

 ANN 0.85 0.95 −0.11 −0.06 0.63 0.60

 MAM 0.81 0.94 −0.3 −0.29 1.22 1.18

 JJA 0.64 0.9 −0.09 0.04 0.91 0.81

 SON 0.89 0.94 −0.01 −0.004 0.85 0.85

 DJF 0.91 0.94 −0.05 −0.03 1.14 1.6

Southeast China (SE)

 ANN 0.95 0.98 −0.1 −0.001 0.54 0.38

 MAM 0.96 0.98 −0.24 −0.17 0.99 0.82

 JJA 0.66 0.94 −0.02 0.09 0.6 0.6

 SON 0.94 0.97 −0.07 0.04 0.87 0.77

 DJF 0.97 0.98 −0.09 0.01 1.2 1.33

Southwest China (SW)

 ANN 0.95 0.99 −0.08 0.003 0.6 0.5

 MAM 0.93 0.98 −0.15 −0.08 1.19 1.14

 JJA 0.96 0.99 −0.03 0.07 0.6 0.6

 SON 0.96 0.99 −0.04 0.04 0.76 0.97

 DJF 0.94 0.98 −0.13 −0.04 1.26 1.28

Tibetan Plateau (TP)

 ANN 0.77 0.96 −0.17 −0.04 1.00 0.79

 MAM 0.77 0.96 −0.15 −0.07 1.65 1.36

 JJA 0.72 0.94 −0.2 −0.04 1.10 1.23

 SON 0.77 0.96 −0.14 0.01 1.17 1.29

 DJF 0.76 0.88 −0.24 −0.09 1.78 1.57

Northwest China (NW)

 ANN 0.81 0.94 −0.06 −0.06 0.66 0.83

 MAM 0.81 0.96 −0.29 −0.36 1.52 1.71

 JJA 0.83 0.97 0.04 0.03 0.73 0.83

 SON 0.81 0.96 0.1 0.12 0.90 1.03

 DJF 0.72 0.72 −0.14 −0.09 1.29 1.83
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observed among the observations, particularly between 
GPCP and other three products, which is related to its reso-
lution. The observations indicate two peaks of frequency in 
rainfall amounts of <0.5 and 2.5–3.5  mm/day, separately. 
MIROC5 and WRF reproduce the main features of precipi-
tation probability distribution; however, they underestimate 
the frequency of light rainfall (<0.5 mm/day) and overes-
timate the frequency of heavy rainfall (>8  mm/day). The 
bias feature is also observed in the probability distribution 
of domain-averaged daily precipitation over eastern China 
(Fig. 7b), which shows positive bias in the frequency of the 
light rainfall but negative one in the frequency of the heavy 
rainfall.

The annual mean precipitation trend for 1976–2005 is 
compared based on observations and model simulations. 
The reason why we use the period of 1976–2005 instead 
of 1986–2005 is that a lot of previous research indicated a 
decadal shift of precipitation over eastern part of China in 

the late 1970s, with the precipitations increase in the Yang-
tze River Valley and decrease in North China (Wang 2001; 
Ding et al. 2009), which can be found in the observations in 
Fig. 8. The observation also shows that the annual precipi-
tation increases over Southeast China and the eastern edge 
of the Tibetan Plateau, while decreases in central China 
and Southwest China. When focusing on the model simu-
lation, MIROC5 can reproduce some features of precipita-
tion change, but the wet trend over North China is opposite 
to the observation. WRF simulation exhibits much better 
agreement with the observation, including more precipita-
tion in the lower reaches of Yellow River Valley, the Yang-
tze River Valley, Southeast China, and the eastern edge of 
the Tibetan Plateau and less precipitation in North China 
and Southwest China. Considering the trend is of funda-
mental importance in our future projection estimations, this 
significant improvement indicates more confidence of the 
robustness for WRF in future projection simulations.

Fig. 4   Same as Fig. 2, but for 
summer precipitation (units: 
mm)
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3.2.2 � Bias analysis

WRF can generally reproduce spatial distribution, variation 
and trend of precipitation over China, however, there are 
biases between the simulation and observation, with over-
estimation in Southeast China, while underestimation in the 
middle latitude of China in summer (Fig.  4f). The biases 
are revealed by the model simulation of atmospheric circu-
lation and moisture transport in summer.

The pressure–latitude cross-section of the summer 
mean zonal and meridional wind averaged over 110°–130° 
from CFSR and WRF is illustrated in Fig.  9. The zonal 
cross-section is occupied by the westerly winds across 
the whole troposphere, except for the easterly wind in the 
low latitude above 500 hPa in the observation. The meridi-
onal winds are southerly wind in the low troposphere in 
the low latitude, and northerly wind in the middle tropo-
sphere in the middle latitude. Southerly wind is observed 
in upper troposphere in high latitude. WRF can generally 

reproduce the main features of wind distribution, however, 
there are differences between the observated data and the 
simulation.

For the zonal wind, the subtropical westerly jet at 
200 hPa in WRF is stronger, with the center moving south-
ward, and the westerly winds in the low troposphere are 
weaker in low latitude while stronger in the middle latitude 
(Fig.  9). For the meridional wind, the simulated south-
erly wind centre in the low troposphere in low latitude is 
stronger than the observation, and is weaker in the middle 
latitude.

The simulated strong subtropical westerly jet and strong 
southerly wind centre in low troposphere are linked with 
the southerly and easterly wind anomaly in low troposphere 
in low latitude and northerly and westerly wind anomaly 
in the middle latitude. This wind biases affected the atmos-
pheric circulation simulation and moisture transport, which 
is closely connected to the summer precipitation in eastern 
part of China.

Fig. 5   The annual cycle of precipitation (units: mm/day) from observation and model simulations for China (a) and the sub-regions (b–h)
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The spatial distribution of zonal wind and model bias at 
200 hPa indicate WRF overestimates the subtropical west-
erly jet and the centre is south to the observation (Fig. 10a–
c). For the zonal wind at 850 hPa, a negative bias belt exists 
at the low latitude of China. Compared with CFSR data, 
westerly wind is stronger and extends far southward, as a 
result, a positive bias belt exists in the middle latitude. For 
the meridional wind at 850  hPa, the simulated southerly 
winds in Southeast China are considerable stronger than the 
observation. With the negative bias of zonal wind, there is a 
positive bias of southeasterly flow in southeast China. WRF 
overestimates the westerly wind in the middle latitude, but 
underestimates the southerly wind, therefore, a northwest-
erly wind bias exists in the middle latitude of China.

For the moisture transport at 850 hPa, the strong south-
easterly flow results in stronger moisture transport in South-
east China, which exists a strong positive bias and has sig-
inifcant effect on the positive precipitation bias in the region. 
On the other hand, WRF shows a strong negative bias for 
moisture transport in the middle latitude of China, exhibit-
ing less moisture transport in this region. What is more, there 
exists strong negative bias of specific humidity in WRF sim-
ulation (Fig. 10m–o), this model bias results in the negative 
bias of precipitation in the middle latitude of China.

Fig. 6   Latitude–time cross-
section of the precipitation 
(unit: mm/day) average over the 
regions of 110°–125°E from the 
observation (a–d) and the cor-
responding model-observation 
differences (e, f)

Fig. 7   a Probability distribution of temporal averaged precipitation, 
b probability distribution of domain-averaged daily precipitation over 
China, CN05 and APHRO are used due to the availability of daily 
precipitation
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3.3 � Climate extremes

To determine the model’s performances in simulating cli-
mate extremes, several climate extremes indices were com-
puted, namely number of tropical nights (TR), cold spell 
duration index (CSDI), percentage of days when daily 
minimum temperature lower than 10th percentile of daily 
minimum temperature (TN10P), percentage of days when 
daily maximum temperature greater than 90th percentile of 
daily maximum temperature (TX90P), number of summer 
days (SU), number of icing days (ID), annual count of days 
when daily precipitation greater than 10  mm (R10mm), 
maximum length of wet spell (CWD), annual account of 
precipitation when daily precipitation greater than 95th 
percentile of daily precipitation (R95PTOT), monthly max-
imum consecutive 5-day precipitation (RX5DAY). Further 
details of these indices have been reported by Karl et  al. 
(1999). Because the indices require maximum temperature, 

minimum temperature, and precipitation observations on 
daily scale, we used CN05 products as the observation.

The spatial distribution of tropical nights (TR) derived 
from the observation indicates that TR is more in the low 
latitude, ranging from Southeast China and Southwest 
China to the Yangtze River Valley (Fig. 11a). For MIROC5 
simulation, TR is generally overestimated, the larger posi-
tive biases cover Southeast China, the Yangtze River Val-
ley, North China, Northeast China and Northwest China. 
Improvement of TR simulation is observed in WRF simula-
tion, with the regions where the model has biases covering 
less area than that of MIROC5, especially in North China, 
Northeast China and Northwest China (Fig. 11e).

For the simulation of cold spell duration index (CSDI), 
MIROC5 mainly shows positive bias over China, especially 
over the Tibetan Plateau, meanwhile, the regions where 
CSDI is underestimated cover the Northeast China and 
Northwest China. In WRF simulation, the regions where 

Fig. 8   Annual precipitation 
trend for 1976–2005 from a 
CN05, b APHRO, c CRU, d 
MIROC5 and e WRF for JJA. 
Dots indicate the significance 
level is higher than 90 %



2024 E. Yu et al.

1 3

CSDI is overestimated cover less area with less biases, 
especially over the Tibetan Plateau. The correlation coef-
ficient for WRF is 0.80, which indicates better performance 
of WRF compared with MIROC5 (0.75 in Fig. 11d).

For the percentile type extreme temperature indices, 
TN10P and TX90P were calculated. TN10P is larger in the 
regions of Southeast China, Southwest China and central 
China in the observation. MIROC5 shows mostly positive 
biases over China, especially in Southwest Tibet. However, 
in the WRF simulation, the regions where TN10P is overes-
timated exhibits less biases, resulting in higher correlation 
coefficient in WRF (0.96) compared with MIROC5 (0.94).

Spatial distribution of TX90P derived from the obser-
vation indicates that TX90P is larger in North China and 
eastern part of Northwest China (Fig.  12). Consistent 
underestimations are found in MIROC5 simulation over 
China. However, the regions where TX90P is underesti-
mated cover less area in the WRF simulation, especially 
over Southeast China, North China, the Tibetan Plateau, 
and eastern part of Northwest China. The range of biases in 
WRF simulation is also smaller than that in MIROC5, thus 
WRF shows better performance with high correlation coef-
ficient (0.99) compared with MIRCO5 (0.98).

Summer days number (SU) from the observation reveals 
similar distribution with the summer mean temperature 

(Fig. 2a). These features are well reproduced by MIROC5 
and WRF, however, SU is generally overestimated by 
MIROC5, with the exception of Southeast China and 
Northwest China. For WRF simulation, consistent under-
estimation is observed over China, the maximum negative 
biases are located in Tarim Basin and Southwest China, 
which is similar with the MIROC5 simulation, however, the 
correlation coefficient is much higher in WRF (0.97) com-
pared with MIROC5 (0.90 in Fig. 13e).

For icing days number (ID) simulation, both MIROC5 
and WRF generally overestimate ID, especially over the 
Tibetan Plateau. Meanwhile, WRF shows better similar-
ity with the observation with higher correlation coefficient 
(Fig. 13f).

R10mm derived from the observation shows similar dis-
tribution with the precipitation (Fig. 4a), with more R10mm 
in Southeast China and less in Northwest China (Fig. 14a). 
Both MIROC5 and WRF overestimate R10mm, especially 
over Southwest China and the Tibetan Plateau. The regions 
where R10mm is overestimated in WRF simulation cover 
less area with smaller bias range, which results in higher 
correlation coefficient in WRF simulation (0.91) than that 
in MIROC5 (0.89 in Fig. 14f).

Observed maximum length of wet spell (CWD) indi-
cates more CWD over Southeast China and the Tibetan 

Fig. 9   Pressure–latitude 
cross-section of the zonal (a, 
c, e) and meridional winds (b, 
d, f) average over the regions 
of 110°–130° in summer for 
CFSR (a, b), WRF (b, e), and 
the biases (c, f model minus 
observation, unit: m s−1)
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Plateau, and less over Northwest China. This distribution 
can be reproduced by MIROC5, however, CWD is gener-
ally overestimated, except for the regions in Southeast 
China and Southwest China. There are improvements in 
WRF simulation over Southeast China, the Yangtze River 
Valley and North China, however, WRF shows large nega-
tive biases in the Tibetan Plateau (Fig. 14f).

For annual account of precipitation when daily precipi-
tation greater than 95th percentile of daily precipitation 
(R95PTOT), observation indicates R95PTOT decreases 
from Southeast China to Northwest China, which is similar 

with the precipitation distribution (Fig. 4a). Both MIROC5 
and WRF reproduce the distribution of R95PTOT well, 
however, consistent positive biases can be found in the 
simulations over China. The maximum overestimation 
is located in Southwest China and the eastern edge of the 
Tibetan Plateau. In the regions of North China and central 
China, the areas where R95PTOT is overestimated cover 
less area in WRF simulation, and the correlation coeffi-
cient is higher in WRF (Fig.  15e). RX5Day derived from 
the observation indicates that RX5DAY is high in South-
east China and low in Northwest China (Fig.  15b). Both 

Fig. 10   Observed (a, d, g, j, m) and simulated (b, e, h, k, n) zonal 
winds at 200 hPa (a–c, unit: m s−1), zonal winds (d–f, unit: m s−1), 
meridional winds (g–i, unit: m s−1), the water vapor flux (shaded) and 

vector (j–l, unit: g m−1 s−1), and specific humidity (m–o, unit: g/kg) 
at 850 hPa in summer along with the bias (c, f, i, l, o)
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Fig. 11   Spatial distribution 
of TR (a, c, e, units: day) 
and CSDI (b, d, f, units: day) 
climatology (a, b) and model-
observation differences (model 
minus observation, c–f) during 
1986–2005 from the CN05, 
MIROC5 and WRF, the correla-
tion coefficients between model 
results and CN05 products are 
labeled on the top right, asterisk 
indicated the significant level is 
higher than 90 %

Fig. 12   Same as Fig. 11, but 
for TN10P (a, c, e, units: %) 
and TX90P (b, d, f, units: %)
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Fig. 13   Same as Fig. 11, but 
for SU (a, c, e, units: day) and 
ID (b, d, f, units: day)

Fig. 14   Same as Fig. 11, but 
for R10mm (a, c, e, units: day) 
and CWD (b, d, f, units: day)
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MIROC5 and WRF well reproduce the spatial distribution, 
with the correlation coefficient of 0.92. However, RX5DAY 
is generally overestimated by MIROC5 and WRF, the 
regions where RX5DAY is overestimated cover less area in 
WRF simulation over Southwest China, and the bias range 
is smaller in WRF simulation.

4 � Conclusion and discussions

Global warming has profound impact on the vulnerable 
environment  in China, robust climate projection is quite 
important. However, the coarse resolution of the GCMs 
limits the models’ performance in resolving the regional 
scale atmospheric circulation. High-resolution simulations 
can improve the model performance (Liu et al. 2012b; Yu 
2012; Gao et al. 2011). Meanwhile, future human adapta-
tion assessments require climate change information at the 
resolution much finer than GCMs can provide.

We completed a long continuous simulation for historical 
run (1946–2005) and RCP60 run (2006–2100) using WRF, 
in which the main objectives are to provide multi-model 
high-resolution future projection simulations and to offer an 
assessment of climate change over China for adaptation and 
migration studies. In this paper, the model’s ability in simu-
lating the present (1986–2005) climate is validated using his-
torical run and multiple observational products.

We find that MIROC5 can effectively reproduce the spa-
tial distribution of temperature, whereas WRF exhibits much 
better agreement with the observation, particularly for the 
regional features in Southeast China and Northwest China. 
The uncertainties in temperature variability are larger than 
those in climatology among both the observation products 
and the simulations. WRF achieves better performances over 
China and shows better agreement with the observation.

Precipitation decreases from southeast to northwest, 
and is more in summer and less in winter. The rainfall belt 
advances and retreats over eastern China due to the mon-
soon system. For the frequency distribution, the observa-
tions indicate two peaks of frequency in rainfall amount of 
<0.5 and 2.5–3.5 mm/day, separately. MIROC5 reproduce 
these precipitation features with model deficiency, whereas 
WRF simulation shows better performance, particularly at 
the regional scale. WRF shows obvious wet bias in precipi-
tation in Southeast China and the middle latitude of eastern 
China, which can be explained by biases in atmospheric 
circulation and water vapor transport. The spatial distri-
butions of several extreme climate indices are effectively 
reproduced by MIROC5 and WRF. In addition, improve-
ments are observed in the later simulation, this significant 
improvement gives us more confidence in RCM simulation 
for future projection.

It is important that in the continuous simulation, the 
boundary conditions of the MIROC5 outputs were used 

Fig. 15   Same as Fig. 11, but 
for R95PTOT (a, c, e, units: 
mm) and RX5DAY (b, d, f, 
units: day)
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other than reanalysis data; therefore, the boundary condi-
tions could not be considered as “perfect” conditions. Pre-
vious studies revealed that the bias of GCM can be trans-
ferred to RCM (Liu et  al. 2012b; Berg et  al. 2013; Liang 
et  al. 2008), the better performance of RCM emphasizes 
the importance of the finer-scale surface forcing in produc-
ing realistic small-scale features (Argueso et al. 2012; Kim 
et al. 2013; Gao et al. 2008). This validation also indicates 
the potential value of high-resolution simulation for appli-
cation in future adaptation and migration studies.

In addition, there are large uncertainties in the simula-
tion over the Tibetan Plateau and Northwest China. Apart 
from the model deficiency over these regions, we should 
also consider the uncertainties in the observations because 
the stations are sparse and are always located in the lowland 
over these regions (Yu 2012; Wu et al. 2011). This uncer-
tainty jeopardizes our ability to extensively investigate the 
regional climate over these regions and demonstrates the 
importance of accurate measurements and proper setup of 
the observation stations.

Finally, because uncertainties remain in the precipitation 
simulations discussed above and in previous studies (Gao 
et  al. 2011; Liu et  al. 2012b), future projection should be 
interpreted with caution. According to our evaluation, the 
agreement is better in temperature simulation than that in 
precipitation, and the model performance is better in simu-
lating the climatology than that for variability and trends. 
Considering the uncertainties in the RCM itself and those 
transferred from the GCM, regional model ensembles at high 
resolution should be conducted in future studies to reduce the 
uncertainties and to provide more robust climate projections.
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