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ABSTRACT

Global land surface hydrology andheat fluxes can be estimated by running a land surfacemodel (LSM)driven

by the atmospheric forcing dataset. Previous multimodel studies focused on the impact of different LSMs on

model results. Here the sensitivity of the Community Land Model, version 4.5 (CLM4.5), results to the at-

mospheric forcing dataset is documented. Togetherwith themodel default global forcing dataset (CRU–NCEP,

hereafter CRUNCEP), three newly developed, reanalysis-based, near-surface meteorological datasets (i.e.,

MERRA, CFSR, and ERA-Interim) with the precipitation adjusted by the Global Precipitation Climatology

Projectmonthly product were used to drive CLM4.5. All four simulationswere run at 0.58 3 0.58 grids from1979

to 2009 with the identical initialization. The simulated monthly surface hydrology variables, fluxes, and the

forcing datasets were then evaluated against various observation-based datasets (soil moisture, runoff, snow

depth and water equivalent, and flux tower measurements). To partially avoid the mismatch between model

gridbox values and point measurements, three approaches were taken. The model simulations based on three

newly constructed forcing datasets are overall better than the simulation fromCRUNCEP, in particular for soil

moisture and snow quantities. The ensemble mean from the CLM4.5 simulations using the four forcing datasets

is generally superior to individual simulations, and the ensemblemean latent and sensible heat fluxes over global

land (608S–908N) are 42.8 and 40.3Wm22, respectively. The differences in both precipitation and other at-

mospheric forcing variables (e.g., air temperature anddownward solar radiation) contribute to the differences in

simulated results. The datasets are available from the authors for further evaluation and for various applications.

1. Introduction

As an important component of the earth system, the

land surface affects the climate through its exchange of

water, energy, and carbon fluxes with the atmosphere.

The relatively long memory of land surface processes

(e.g., soilmoisture) canalso improve climateprediction skills

(Koster et al. 2000, 2004). For example, a strong coupling

between soil moisture, air temperature, and rainfall is found

in monsoonal and other regions (Koster et al. 2004; Zeng

et al. 2010). Furthermore, the land processes affect the

partitioningof surfacenet radiation into latent, sensible, and

ground heat fluxes (Lawrence et al. 2007). The latent heat

flux (LHF) determines howmuch water evaporates back to

the atmosphere, which influences precipitation (Makarieva

et al. 2014), while the sensible heat flux (SHF) controls the

air temperature, which is an important indicator of climate

Supplemental information related to this paper is available at the

Journals Online website: http://dx.doi.org/10.1175/JHM-D-16-0041.s1.

Corresponding author address: Aihui Wang, Nansen-Zhu In-

ternational Research Centre, Institute of Atmospheric Physics, Chi-

nese Academy of Sciences, 40 Huayanli, Chaoyang District, Beijing

100029, China.

E-mail: wangaihui@mail.iap.ac.cn

SEPTEMBER 2016 WANG ET AL . 2493

DOI: 10.1175/JHM-D-16-0041.1

� 2016 American Meteorological Society

http://dx.doi.org/10.1175/JHM-D-16-0041.s1
mailto:wangaihui@mail.iap.ac.cn


change (Ban-Weiss et al. 2011). Therefore, the global esti-

mates of the key surface hydrological and flux variables are

especially important for the land–atmosphere interaction

studies.

However, in situ observations of the land surface state

variables are sparse in both space and time, and some of

the key variables are difficult to measure in the field. For

example, in situ soil moisture data are available only at

limited stations for a short period (Robock et al. 2000;

Zreda et al. 2012). More recently, great efforts have

been made to increase the soil moisture database, and

the International SoilMoistureNetwork (ISMN;Dorigo

et al. 2013) and the North American Soil Moisture Da-

tabase (NASMD; Xia et al. 2015) are two examples. The

sensible/latent heat flux measurements exist only over

limited flux tower sites (https://fluxnet.ornl.gov/).

Land surfacemodels (LSMs) are one of the useful tools

used to simulate the evolution of land biogeophysical

processes, and they are widely used to produce high-

resolution land surface state variables. The uncertainties

of LSM simulations are affected by the atmospheric forc-

ing datasets andmodel parameterizations.Much effort has

been made to improve the model simulation through the

parameterization development and incorporation of new

components (e.g., Lawrence et al. 2011), and by improving

the accuracy of atmospheric forcing datasets (e.g., Qian

et al. 2006).However, few studies have attempted to assess

the relative role of these atmospheric forcing errors and

land model deficiencies (Mizukami et al. 2016).

To mitigate the uncertainties of individual model pa-

rameterization schemes, several multi-LSM projects

have been developed, such as the Global Soil Wetness

Project (GSWP; Dirmeyer et al. 1999, 2006), the North

American Land Data Assimilation System (NLDAS;

Mitchell et al. 2004; Xia et al. 2012 a,b), and the Global

Land Data Assimilation System (GLDAS; Rodell et al.

2004). In these projects, several LSMs were driven by

the same atmospheric forcing dataset, and the simulated

land surface state variables and their ensemble mean

were then evaluated (e.g., Guo et al. 2006, 2007; Xia

et al. 2014). The intermodel dispersions are usually large

(Dirmeyer et al. 2006), and the ensemble mean from

multimodel simulations is generally superior to indi-

vidual model simulations (e.g., Guo et al. 2007), because

of the partial cancellation in the ensemble mean of un-

certainties and biases in individual simulations. The

multimodel ensemble approach has also been used in

surface hydrology studies (e.g., Wang et al. 2009, 2011;

van Huijgevoort et al. 2013).

While the above multimodel projects focused onmodel

uncertainties, they did not quantify the simulation diver-

sities caused by the uncertainties in atmospheric forcing

datasets. These forcing datasets are usually derived from

retrospective analyses (i.e., reanalyses) that are bias cor-

rected by the in situ or remotely sensed observations (e.g.,

Qian et al. 2006; Sheffield et al. 2006). Using a revised

LSM forced by the Modern-Era Retrospective Analysis

for Research and Applications (MERRA) product with

bias-corrected precipitation, Reichle et al. (2011) found

that the land surface hydrology simulations (referred to as

MERRA-Land) were greatly improved in comparison to

MERRA itself. A similar study was also conducted based

on European Centre for Medium-Range Weather Fore-

casts (ECMWF) interim reanalysis (ERA-Interim; re-

ferred to as ERAI-Land; Balsamo et al. 2015).

In this study, we have performed several sensitivity

simulations using a widely used LSM driven by different

global atmospheric forcing datasets to address two

questions: 1) How do the variations of the atmospheric

forcing dataset affect the simulated land surface state

variables? and 2) Compared to observations, does the

ensemble mean improve the results from individual

sensitivity simulations? With a focus on the forcing

dataset uncertainties, this study complements previous

and ongoing community efforts that have focused on

land model uncertainties (e.g., GSWP, NLDAS, and

GLDAS). However, while the detailed evaluation of

model results was not discussed in the same paper (i.e.,

these results were presented in separate papers), we

decided to include the comparison of model results with

comprehensive observational datasets in this paper.

Section 2 introduces themodel, while section 3 describes

the atmospheric forcing datasets and various validation

datasets. Section 4 presents the comparisons and dis-

cussion, while section 5 provides the summary.

2. Land model description

The Community Land Model, version 4.5 (CLM4.5;

Lawrence et al. 2011; Oleson et al. 2013), is the land

component of Community Earth System Model (CESM;

Hurrell et al. 2013). It simulates the terrestrial biogeophysical/

biogeochemical processes such as the water and heat

transfer between vegetation and soil; the partitioning of

solar and longwave radiation fluxes into latent, sensible,

and ground heat fluxes; and the partitioning of pre-

cipitation into evapotranspiration, runoff, and change of

total water storage. The Community Land Model with

the default forcing has been extensively evaluated in

numerous publications (e.g., Lawrence et al. 2011). A

complete documentation of CLM4.5 is provided by

Oleson et al. (2013).

The offline CLM4.5 simulations require continu-

ous atmospheric forcing variables, including incident

shortwave/longwave radiation, air temperature, humidity,

pressure, precipitation, and wind speed. The atmospheric
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forcing dataset used in this work will be discussed in the

next section. In addition, CLM4.5 needs parameters re-

lated to land use and land cover, vegetation (e.g., leaf/stem

area index and fraction of vegetation coverage) and soil

(e.g., soil texture). Default values of these parameters in

CLM4.5 (Oleson et al. 2013) are used in this study. For

simplicity, CLM4.5 is referred to as CLM hereafter.

3. Atmospheric forcing datasets, validation data,
and analysis methods

a. Atmospheric forcing datasets

Four global atmospheric forcing datasets were used here

to drive CLM. One is the default dataset (CRU–NCEP,

hereafter CRUNCEP) for CLMbased on a combination

of two existing datasets: the 0.58 3 0.58 monthly Cli-

matic Research Unit (CRU) Time Series (TS; Mitchell

and Jones 2005) and the 2.58 3 2.58 reanalysis products
developed by the National Centers for Environmental

Prediction and the National Center for Atmospheric

Research (NCEP–NCAR) beginning in 1948 (Kalnay

et al. 1996). In CRUNCEP, the air temperature, pre-

cipitation, humidity, and solar radiation have the same

diurnal and day-to-day variability as theNCEP–NCAR

reanalyses, but their monthly means are bias corrected

by the CRU TS, version 3.1, monthly climatology. Other

parameters (i.e., surface pressure, downward longwave

radiation, and wind speed) are directly interpolated from

NCEP–NCAR reanalyses products. Currently, there are

five versions of CRUNCEP products available, derived

from different versions of CRU datasets. In this work, we

used version 4, which was based on CRU TS, version

3.2.1. (More details of CRUNCEP constructions are

available at http://www.cesm.ucar.edu/models/cesm1.2/

clm/clm_forcingdata_esg.html.)

Besides CRUNCEP, three additional global atmo-

spheric forcing datasets have been constructed based on

more recent reanalysis products, including the NASA

Global Modeling and Assimilation Office (GMAO)

MERRA (Rienecker et al. 2011), ERA-Interim (here-

after ERAI; Dee et al. 2011), and the NCEP Climate

Forecast System Reanalysis (CFSR; Saha et al. 2010).

These three reanalysis products have been demon-

strated to bemore accurate inmany aspects than the first-

generation reanalysis (i.e., NCEP–NCAR reanalyses)

because of improved models and advanced data assim-

ilation systems (Rienecker et al. 2011).

To construct these three global forcing datasets, sur-

face meteorology variables were downscaled to the

same 0.58 3 0.58 grid boxes to be consistent with the

spatial resolution of CRUNCEP forcing. The original

grid spacing of reanalysis products is 1/28 3 1/38 for

MERRA, 0.58 3 0.58 for CFSR, and about 0.758 3 0.758
for ERAI. We used a bilinear interpolation method to

downscale meteorology variables (except precipitation)

to 0.58 3 0.58 grid boxes.

Because of the temporal heterogeneity of precipitation,

bilinear interpolation would reduce the spatial variability

and induce false precipitation amount. Therefore, we di-

vided each native reanalysis grid box into 0.018 3 0.018
pixels with the same precipitation amount as the gridbox

average at each time step. Then the precipitation at each

0.58 3 0.58 grid box was simply taken as the average

precipitation over all pixels within this grid box. This

method conserves precipitation amount within a speci-

fied area before and after mapping.

Because precipitation is the only water input in the

model (without considering irrigation), errors in pre-

cipitation affect both the simulated land surface hydrolog-

ical fields and the heat fluxes through evapotranspiration.

Although precipitation in these three reanalysis systems is

generally improved compared to earlier ones (Bosilovich

et al. 2008), biases between reanalysis systems (including

MERRA, ERAI, and CFSR) and the observation-based

global precipitation product are still large and vary with

both regions and reanalysis system (Bosilovich et al. 2011).

The uncertainties in reanalysis precipitation may come

from the model parameterization, the quantities and

qualities of observed precipitation datasets being as-

similated, and/or the assimilation schemes. Therefore,

the precipitation biases in reanalysis products need to be

corrected. For the same reason, only the precipitation

was corrected for bias in MERRA-Land (Reichle et al.

2011) and ERAI-Land (Balsamo et al. 2015).

TheGlobal PrecipitationClimatology Project (GPCP),

version 2.2, 2.58 3 2.58 monthly mean precipitation

product (available from 1979; Adler et al. 2003; Huffman

et al. 2009) was used to bias correct reanalysis precipita-

tion in this study. Compared to the CRU precipitation

based on rain gauge data only, the GPCP product was

derived by merging satellite measurements and rain

gauge observations. The GPCP product also uses more

rain gauges than the CRUproduct. Trenberth et al. (2014,

their Fig. 1) found that these differences affected drought

reconstruction. In our bias-correction process, the GPCP

product was first disaggregated to 0.58 3 0.58 grid boxes.

Second, for each grid box, we computed a scaling factor as

the ratio of monthly GPCP to monthly reanalysis pre-

cipitation. Finally, the scaling factor was multiplied by the

reanalysis precipitation at each time step in the same

month to form the new corrected precipitation.

It should be noted that the reanalysis precipitation

was not adjusted at a small number of grid boxes with zero

monthly precipitation in reanalysis but with a nonzero

value in theGPCPproduct. This led to small differences of
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monthly precipitation among the three new atmospheric

forcing datasets (Table 1). In addition, the original tem-

poral resolution of each reanalysis product was maintained

in each forcing dataset, that is, 1-hourly for MERRA,

3-hourly for ERAI, and 6-hourly for both CFSR and

CRUNCEP. During model simulation, CLM automati-

cally interpolated each forcing variable from their input

temporal resolution to the model time step (i.e., 1h). The

‘‘coszen’’ (i.e., weighting based on the cosine of solar zenith

angle), ‘‘nearest,’’ and ‘‘linear’’ interpolationmethodswere

used for downward shortwave radiation, precipitation,

and other forcing variables, respectively (Kluzek 2013).

b. Datasets for land model evaluations

Instead of usingmeasurements over one region or from

one network, we used several comprehensive measure-

ments over different land areas. These datasets include

in situ soil moisture measurements in China and the

United States, global river discharge, in situ snow depth

and snow water equivalent (SWE) measurements in

China, global reconstructed gridded snowdepth data, and

flux towermeasurements over North and SouthAmerica.

1) SOIL MOISTURE

In situ measured soil moisture data are from the Na-

tional Meteorological Information Center (NMIC) at

the ChinaMeteorological Administration (CMA; http://

data.cma.cn/site/index.html). The original measure-

ments were obtained every 10 days (i.e., 8, 18, and 28 of

every month) by the gravimetric technique, and no

measurements were made over frozen soil. There are

more than 700 stations available over China. We se-

lected the soil moisture measurements at 10 cm below

ground from 226 stations from April to September for

1993–2008, because soil moisture data below 10 cm

contains too many missing values (Fig. 1). Furthermore,

soil moisture measurements from Illinois, United States,

were used (Hollinger and Isard 1994). This dataset

contains 19 sites across the state of Illinois (378–438N,

888–908W) from February 1981 to June 2004. The soil

moisture was measured by the neutron-probe technique

calibrated with gravimetric observations, and the mea-

surements were taken at every 10cm from the ground

surface to 200 cm below the surface. In our evaluation, the

monthly soil moisture measurements during 1981–2004 at

three layers (i.e., 0–10, 10–100, and 100–200cm)were used

to evaluate the model simulations.

The representativeness of station soil moisture mea-

surements in evaluating the model gridcell average is a

challenging task. To partially avoid this issue, regional

mean soil moisture from model simulations was com-

pared with the site average measurements in previous

studies (e.g., Xia et al. 2014). Here the same approach was

applied over Illinois where the site average observed soil

moisture at three depths was compared with model sim-

ulations averaged over the region (378–438N, 888–908W).

Furthermore, the soil moisture sites inChinawere divided

into three regions: northeastern China (NE; 398–508N,

1208–1348E), northwestern China (NW; 328–398N,

958–1078E), and central eastern China (CE; 308–398N,

1078–1208E), where the stations are relatively dense

and evenly distributed (Fig. 1). Over each region, the

mean soil moisture at 0–10 cm was compared.

2) THE GRDC RIVER DISCHARGE

The global 0.58 3 0.58monthly runoff provided by the

Global Runoff Data Centre (GRDC) was used in this

study (Fekete et al. 2002). The GRDC monthly runoff

product is the combination of the gauge discharge data

for the time period of the observation records and the

outputs of a water balancemodel driven by observational

meteorology data. The runoff is not only constrained by

observed discharge values, but also preserves the spatial

distribution of water balance (Fekete et al. 2002).

Therefore, the data at present provide a good estimate

(but not the ground truth) of global terrestrial runoff.

3) SNOW

Snow is one of the most important components for

land surface hydrology. Themodel-simulated monthly

TABLE 1. Annual averages of selected quantities for 1980–2009 over global land areas (608S–908N).

CRUNCEP MERRA CFSR ERAI Ens-mean

Pr (mmday21) 2.08 2.33 2.33 2.34 2.27

Tair (8C) 12.27 13.88 12.96 13.14 13.31

SWd (Wm22) 196.22 203.50 194.39 190.45 196.14

LWd (Wm22) 321.93 323.33 316.53 322.16 320.09

ET (mmday21) 1.43 1.51 1.29 1.34 1.39

Ro (mmday21) 0.62 0.80 1.00 0.96 0.85

SHF (Wm22) 43.32 42.24 44.62 41.12 42.83

LHF (Wm22) 41.41 43.71 37.28 38.84 40.31

Rn (Wm22) 85.44 87.13 83.01 81.10 84.17

Pr 2 (ET 1 Ro) (mmday21) 20.07 0.02 0.04 0.04 0.03
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snow depth and SWE over China were compared to

observational data provided by the NMIC (http://data.

cma.cn/site/index.html).We selected 537 stations for snow

depth and 342 stations for SWE from 831 stations, with

the criteria that each station has data available for at

least 80% of the months during 1980–2009 (Fig. 1).

4) FLUX TOWER MEASUREMENTS

Decker et al. (2012) used the surface meteorological

variables and fluxes at 33 FluxNet stations (https://

fluxnet.ornl.gov/) to evaluate multireanalysis products

on both hourly and monthly time scales. They computed

the correlation and biases of seven variables (i.e., tem-

perature, wind speed, precipitation, downward short-

wave radiation, net surface radiation, and latent and

sensible heat fluxes) between reanalysis products and

measurements over each station and found that the

statistics vary with the comparison time scales and var-

iables. Here the monthly LHF and SHF at 26 of the 33

stations were used (seven stations were excluded be-

cause they are all within the same 0.58 3 0.58 grid box).

The station information is listed in Table S1 in the sup-

plemental material. Furthermore, we used the monthly

time series of selected variables at an Amazonian site

(3.028S, 53.978W) from FluxNet.

c. Analysis methods

We used various station observations and gridded

products to evaluate model simulations. The bilinear in-

terpolationmethodwas used to interpolate themodel grid

cell to each station location. The correlation coefficient R

and root-mean-square error (RMSE) were computed and

compared. In section 5c, we also used the Nash–Sutcliffe

efficiency coefficientCNS (Nash and Sutcliffe 1970), which

is the ratio of mean-square error between simulated and

observed values over the observed variance.

To synthesize the model performance of the four

simulations over multiple stations in section 5d, we com-

puted the probability distribution functions (PDFs) of R.

To evaluate the relative performance of four simulations

in sections 5c and 5e, we also used a ranking approach

for CNS, R, and RMSE. The ranking algorithm was used

in the multidata intercomparison over the Tibetan Pla-

teau (Wang and Zeng 2012). In the ranking algorithm,

CNS, R, or RMSE values over each region or stations

were ranked from 1 to 5 for four simulations and their

ensemble mean, with 1 given to the simulation with the

lowest RMSE (or highest R and CNS) and 5 with the

largest RMSE (or lowest R and CNS). Then all ranking

scores from all regions and all stations were averaged,

and the lowest (highest) value represents the best (worst)

performance of the model simulations.

4. Intercomparison of atmospheric forcing datasets

In the four atmospheric forcing datasets, three of them

(except CRUNCEP) have nearly identical monthly pre-

cipitation as GPCP, while their diurnal intensity and fre-

quency and day-to-day variability are still based on each

reanalysis product. Figure 2 shows that the broad patterns

FIG. 1. The station distribution of soil moisture (226 stations), snow depth (537 stations), and

SWE (342 stations) in China. The three boxes represent the three regions—northeastern China

(NE; 398–508N, 1208–1348E), northwestern China (NW; 328–398N, 958–1078E), and central

eastern China (CE; 308–398N, 1078–1208E)—that are used in section 5b.
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of the mean annual precipitation for the period of 1980–

2009 from both GPCP and CRUNCEP generally agree

with each other. However, GPCP has a global mean of

2.33mmday21, while CRUNCEP has a smaller value of

2.08mmday21. Over most global land areas, the annual

mean difference between GPCP and CRUNCEP is pos-

itive, except over Greenland and localized areas of South

America where the percentage difference is larger than

60%. The regions with the negative difference exceed-

ing 60% inmagnitude include Alaska, northern Europe,

Siberia, part of eastern Asia, and South America.

Table 1 compares the simulations with different

forcing datasets for a suite of variables. The mean air

temperature (Tair) from 1980 to 2009 varies from 12.278

(CRUNCEP) to 13.888C (MERRA), incoming short-

wave radiation flux (SWd) from 190.45 (ERAI) to

203.33Wm22 (MERRA), and incoming longwave radi-

ation flux (LWd) from 316.53 (CFSR) to 323.33Wm22

(MERRA). Figures S1–S3 in the supplemental material

show the spatial variability of the annualmeanTair, SWd,

and LWd differences among the four products. Regions

with the largest differences in magnitude for the three

forcing variables are roughly consistent, located over

data-sparse regions or regions with complex topogra-

phy (e.g., Greenland, Tibetan Plateau, part of Africa,

and South America). In contrast, the differences are

relatively small over data-rich regions (e.g., North

America, Europe, and eastern China), where relatively

FIG. 2. Annual precipitation (mm day21) averaged over 1980–2009 for (a) CRUNCEP,

(b) GPCP, and (c) their percentage difference (GPCP minus CRUNCEP, and then divided

by CRUNCEP). The mean values over global land areas are indicated. The Antarctic is

excluded.
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more observational data were assimilated into each re-

analysis product.

The above differences in atmosphere forcing datasets

affect model simulations. For example, the quality of

precipitation plays an important role in the model sim-

ulations of surface hydrological variables, such as soil

moisture (e.g., Wang and Zeng 2011) and surface runoff

(Ro; e.g., Fekete et al. 2002). The differences in SWd

also affect surface hydrology, surface temperature, and

terrestrial biosphere and carbon cycle (Wild 2009; Wild

and Liepert 2010). Furthermore, because CLM uses 08C
as the critical Tair to separate snowfall and rainfall, both

the total precipitation (Pr) and Tair in each forcing

dataset affect the snowfall (Fig. S4 in the supplemental

material), which, in turn, directly affects the CLM snow

simulations. Therefore, the disparities of model results

for a specific process from four simulations are caused by

the combined effects of all variables between different

forcing datasets.

5. Evaluation of model simulations

In this section, the CLM-simulated global terrestrial

hydrology and heat flux variables are evaluated. For

model initialization, CLM was first run for 100 years,

driven by cycling the CRUNCEP forcing dataset in year

1979, and the final states were saved. Then, using the

above final states as the new initial fields, CLM was run

from 1979 to 2009 driven by the four atmospheric forc-

ing fields. The monthly results from 1980 to 2009 and

their subsets were used in the analyses below. The en-

semble mean (Ens-mean) from the four simulations was

also evaluated along with individual simulations. For

convenience, the outputs are referred to as CRUNCEP,

MERRA, ERAI, and CFSR, respectively.

To assess the impact of different initializations on

model simulations, CLM was also run for 100 years by

cycling the ERAI forcing dataset for the year 1979. In-

deed, the 5-yr CLM simulations driven by the ERAI

forcing dataset from 1980 to 1984 with the two initial

states yield very similar results (figures not shown). For

instance, the difference of global mean evapotranspira-

tion (ET) is just 0.008mmday21, much less than the

differences between simulations driven by four forcing

datasets as shown in Table 1. Therefore, the disparities

of different results among the four model simulations

are mainly caused by the differences in forcing datasets.

a. Annual mean quantities over global and
hemispheric land

Table 1 shows that the global land annual mean runoff

differs by up to 0.38mmday21, which is greater than the

maximum ET difference between four simulations

(0.22mmday21). The maximum LHF and net radiation

(Rn) differences are comparable (6.43 and 6.03Wm22,

respectively), and both are greater than that of SHF

(3.50Wm22). Note that 1mmday21 of ET can be

roughly translated into LHF of 29Wm22.

Since precipitation is the only water source of current

model experiments (without considering irrigation), it is

not surprising that both ET andRo are different between

CRUNCEP and the three other simulations. However,

the identical GPCP bias-corrected precipitation in the

three forcing datasets does not ensure the same variations

of ET and Ro, since other forcing variables, such as Tair,

are also responsible for the simulated ET and Ro (Wang

and Zeng 2011;Mueller et al. 2013). Indeed the ET, SHF,

and Rn differences among MERRA, CFSR, and ERAI

(with the same precipitation from GPCP) are greater

than those between their average and CRUNCEP. Only

the Ro difference between CRUNCEP and the average

of the three other simulations is greater in magnitude

than differences among the three other simulations. This

demonstrates the importance of both precipitation and

other forcing variables on the model simulations. Fur-

thermore, the difference of each variable in Table 1 be-

tween CRUNCEP and any of the other three simulations

was found to be significant at p5 0.01 (except for ERAI

Tair and LWd).

Recently, several global multiyear ET (or LHF) prod-

ucts based on flux tower measurements, remote sensing

products, and landmodel outputs have been developed to

facilitate the global assessments (Dirmeyer et al. 2006;

Jung et al. 2010; Wang et al. 2011; Mueller et al. 2011,

2013). For example, Jung et al. (2010) estimated the global

land ET of 1.57mmday21 for 1982–2008 based on their

global product constrained by flux tower measurements.

This is consistent with the estimate of 1.59mmday21 for

1989–95 (Mueller et al. 2011) based on global observa-

tions, reanalysis, and IPCC AR4 model outputs. How-

ever, based on the multidataset synthesis (including

multiple global hydrological model outputs, GSWP, re-

analysis, and other LSM outputs), Mueller et al. (2013)

derived the global annualmean landETof 1.35mmday21

for both 1989–95 and 1989–2005. These ET differences

may be caused by the data available period, station data

distribution, model biases, etc. For comparison, we also

computed the annual mean ET for the same period as

the above products. The Ens-mean of annual ET is

1.39mmday21 for 1982–2008, 1.39mmday21 for 1989–95,

and 1.40mmday21 for 1989–2005. These results agree

well with that of Mueller et al. (2013), but differ from

those of Jung et al. (2010) and Mueller et al. (2011).

The LHF and SHF from the four simulations (Table 1)

can also be compared with those from previous modeling

studies. Jiménez et al. (2011) intercompared 12 land
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surface energy fluxes over global land areas for 1993–95,

which include GLDAS, the second GSWP (GSWP-2),

two reanalysis products, and three satellite products.

Their global multiproduct means of LHF, SHF, and Rn

are comparable to those inTable 1, but the spread of their

multiproducts is about 20Wm22, which is much larger

than that from our four simulations. Similarly, the spread

of global land mean ET for the period of 1986–95 in

GSWP-2 from 13 LSMs (driven by the same atmospheric

forcing dataset) is 0.46mmday21 [based on Table 3 in

Dirmeyer et al. (2006)], which is twice as large as

0.23mmday21 from our four simulations for the same

period. The larger spread of ET in GSWP-2 might be

related to the larger number (i.e., 13) of models used, and

the diversity of models from a simple bucket model to

more comprehensive models. An alternative interpreta-

tion of the spread of results in this study and previous

studies would be that surface turbulent flux differences

are primarily caused by LSM differences (rather than by

differences in the atmospheric forcing datasets). A co-

ordinated international effort involving multiple state-of-

the-art land models forced by multiple atmospheric

forcing datasets is needed to fully resolve this issue.

For each simulation, the ET annual anomalies were

the mean of monthly ET anomalies that were computed

as the global (or hemispheric) monthly ET time series

minus their monthly climatology for 1980–2009. These

monthly ET anomalies were then averaged to provide

annual ET anomalies from all four simulations in Fig. 3.

The simulations are closer to each other over the

Northern Hemisphere (NH) than over the Southern

Hemisphere (SH). This can be quantified by computing

the standard deviation (std dev) among the four simu-

lations in each panel in Fig. 3 in each year, and then

averaging them over the whole time period. This aver-

age std dev is 2.21mmyr21 over NH, which is much

smaller than 9.98mmyr21 over SH.

The annual ET shows a positive trend in all products

over the NH (all significant at p 5 0.05), varying from

5.06 (MERRA) to 6.78mmdecade21 (ERAI). In contrast,

the ET trends over SH are inconsistent among the four

products, with negative trends in MERRA and ERAI but

positive trends in CRUNCEP and CFSR. The global ET

trend fromEns-mean is 7.6mmdecade21 (at p5 0.05) for

1982–97, comparable to 7.1 6 1.0mmdecade21 from

Jung et al. (2010), but the trend of24.05mmdecade21

(at p 5 0.05) for 1998–2008 is smaller in magnitude

than 27.9mmdecade21 from Jung et al. (2010). The

opposite sign of the trends for the two periods (1982–97

vs 1998–2007) also suggests the need for a longer period

of time to draw a concrete conclusion in trend analysis.

Similar to ET, the mean annual Ro (i.e., surface plus

subsurface runoff) anomalies from four simulations

(figure not shown) also show amuch smaller spread over

theNH(std dev5 3.81mmyr21) than over SH (std dev5
11.48mmyr21). The mean annual Ro shows positive

trends in both hemispheres, with the trend inNH [varying

from 1.96 forMERRA to 4.49mmdecade21 (at p5 0.05)

for CRUNCEP] much smaller than over the SH [varying

from 4.17 (insignificant) for ERAI to 13.3mmdecade21

(at p 5 0.05) for CRUNCEP].

The spatial distribution of annual mean ET, Ro, SHF,

LHF, and Rn from CRUNCEP, and the differences

among four simulations are provided in Figs. S5–S9 in the

supplemental material. In general, the spatial variations

of these differences reflect the combined effects of forc-

ing variables (e.g., Wang and Zeng 2011). Because the

lack of global data prevents the detailed interpretation of

global distribution of differences in Figs. S5–S9 in the

supplemental material, here we will focus on the evalu-

ation of four products using the datasets discussed in

section 3b in the rest of this section.

b. Soil moisture

Soil moisture is one of the most important hydrolog-

ical variables on the land surface. From the surface hy-

drological balance equation, precipitation should be

roughly balanced by the total ET and Ro over a long-

term period since the change of water storage in the soil

(including both soil and groundwater) is usually very

small. In CLM, the surface hydrology balance also ac-

counts for the runoff from glaciers and snow-capped

surfaces (Oleson et al. 2013). Indeed, the residuals be-

tween Pr and Ro1ET in Table 1 are small (20.07, 0.02,

0.04, and 0.04mmday21 for CRUNCEP, MERRA,

CFSR, and ERAI, respectively). Since Ro only includes

surface and subsurface runoff, the small imbalance of

surface hydrology is caused by the glacier and snow-

capped surfaces and the slight changes of soil moisture

and groundwater.

Soil moisture has a strong spatial heterogeneity partly

because of the spatial heterogeneity of precipitation

(e.g., Zreda et al. 2012). Therefore, the representative-

ness of point soil moisture measurements in evaluating

model gridbox averages is always a challenging issue. To

obtain robust results, here we use three approaches:

1) we use the statistics from 226 stations in China (rather

than emphasize individual stations), 2) we use the av-

erage of these stations over three regions (Fig. 1), and

3) we use the average of all stations.

Table 2 shows the mean correlation coefficient of soil

moisture anomalies between simulations and in situ

measurements at 0–10 cm depth over 226 stations in

China for the growing season (April–September) during

1993–2008. Of all simulations and their ensembles, the

mean R value from CRUNCEP (R 5 0.38) is smaller

2500 JOURNAL OF HYDROMETEOROLOGY VOLUME 17



FIG. 3. Global and hemisphere-averaged annual ET anomalies (mmyr21) from model sim-

ulations. The climatology is based on the simulation from 1980 to 2009 for each atmospheric

forcing dataset. The Antarctic is excluded.
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than others (R5 0.47 or 0.48). For all 226 stations, the

number of stations withR values significant at p5 0.05

varies from 78% (CRUNCEP) to 92% (CFSR), fur-

ther indicating the better performance of CFSR,

ERAI, MERRA, and Ens-mean when compared with

CRUNCEP.

We have also computed the R values of soil moisture

anomalies between simulations and in situ measurements

over three regions inChina (Fig. 1).Of all simulations and

their ensemble, the R values are smallest over north-

western China (e.g., 0.45 over NW for Ens-mean) than

over other the two regions (e.g., 0.67 over NE and 0.64

over CE for Ens-mean). This implies that the model

simulations are relatively less representative over the

semiarid NW with complex topography than over the

other two much more humid regions. When comparing

the R values among four simulations and their ensemble

mean, the R values from CRUNCEP are smallest, while

Ens-mean has the overall highest R values.

Figure 4a shows the time series of monthly averaged

soil moisture anomalies averaged over 226 stations in

China. Except for CRUNCEP, the three other simula-

tions are relatively consistent with each other. The four

simulations overestimate the soil moisture anomalies for

1993–97, but slightly underestimate them for 2006–08.

ThemeanR value of soil moisture anomalies in Fig. 4a is

0.35 for CRUNCEP, 0.46 for MERRA, and 0.47 for

others, consistent with those in Table 2. Soil moisture

was lowest in 1997 and highest in 1998 and 2003, re-

flecting the severe drought in northern China in 1997

and catastrophic floods over the Yangtze River basin in

1998 (Zong and Chen 2000).

To better understand the temporal variability of soil

moisture in Fig. 4a, GPCP and CRUNCEP precipitation

products were bilinearly interpolated to the 226 station

locations, and the mean monthly precipitation anoma-

lies are shown in Fig. 4b. The variations of both pre-

cipitation anomalies agree with each other very well

with R of 0.64, with the largest negative value appearing

in 1997 (associated with the severe drought in northern

China) and positive value in 1998 (associated with the

catastrophic floods over the Yangtze River basin).

Soil moisture anomaly extremes in Fig. 4a lag about

TABLE 2. Mean R between the modeled and observed growing

season (April–September) 0–10 cm soil moisture averaged for 226

stations in China from 1993 to 2008 and 19 stations in Illinois from

1981 to 2004. The correlations of snow depth and the SWE are

derived for 533 stations and 342 stations in China for 1980–2009,

respectively. The value in the parentheses is the percentage of

stations with the correlation significant at p 5 0.05.

China Illinois

Soil moisture Snow depth SWE Soil moisture

CRUNCEP 0.38 (78) 0.35 (85) 0.29 (71) 0.46 (95)

MERRA 0.47 (89) 0.57 (95) 0.48 (87) 0.47 (95)

CFSR 0.48 (92) 0.56 (95) 0.43 (84) 0.46 (95)

ERAI 0.48 (91) 0.58 (97) 0.47 (88) 0.48 (95)

Ens-mean 0.48 (90) 0.60 (97) 0.47 (88) 0.48 (95)

FIG. 4. Monthly (a) soilmoisture anomalies (mm3mm23) at 0–10 cmdepth and (b) precipitation

anomalies (mmday21) averaged over 226 stations in China from model simulations and obser-

vations during the growing season (April–September) for 1993–2008.
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1–2 months behind precipitation anomalies in Fig. 4b.

For instance, the negative extreme in precipitation anom-

aly appeared in June or July 1997, while the negative ex-

treme in soilmoisture anomalywas in July orAugust 1997.

These results are consistent with many previous studies

(e.g., Delworth and Manabe 1988; Wang et al. 2006).

Besides the 226 stations inChina, we have also used the

19 stations in Illinois (a relatively flat area with similar

climatological conditions) for 1981–2004 for model

evaluations. Table 2 shows that the mean R values for

soil moisture at 0–10 cm depth are close to each other

(0.46–0.48) from the four simulations, and the R values

at 18 out of the 19 stations are statistically significant (at

p 5 0.05). We also computed the R values of monthly

soil moisture anomalies between simulations and in situ

measurements averaged over the 19 stations in Illinois.

The R values are all statistically significant (at p5 0.05)

for all three layers (0–10, 10–100, and 100–200 cm). Ens-

mean and MERRA (e.g., with R of 0.53 for the 0–10-cm

soil layer) perform best, and CRUNCEP performs worst

(with R of 0.46 for the 0–10-cm soil layer). These simu-

lations performmuch better in the 10–100-cm layer (e.g.,

R 5 0.80 for Ens-mean) than in the other two layers

(R 5 0.51 or 0.53 for Ens-mean).

c. Runoff

We compared the simulated total runoff (surface plus

subsurface runoff) climatology for 1980–2009 with

GRDC composite runoff products. The GRDC global

mean runoff is about 0.82mmday21, while our simula-

tions vary from 0.62 (CRUNCEP) to 1.0 (CFSR) to

0.85mmday21 (Ens-mean, Table 1). Figure 5 shows the

monthly runoff averaged over 12 regions. The division

of regions was similar to that in Niu et al. (2007), except

that we used eastern China to replace the easternUnited

States. The performances of model simulations vary

with both regions and atmospheric forcing datasets. For

example, in western Siberia, CRUNCEP underestimated

FIG. 5. Regional comparison of modeled monthly total runoff (mmday21) averaged for 1980–2009 with GRDC climatological composite

monthly runoff.
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the runoff, while the three other simulations greatly

overestimated runoff. All models performed better in arid

regions, such as thewesternUnited States, Sahara/Arabia,

and Australian arid regions.

The performances of the four simulations can also be

quantified by CNS (as discussed in section 3c). For in-

stance, CRUNCEP performs best over western Siberia

(with CNS of 0.83) and worst over Congo (with CNS

of20.15). To evaluate the relative performance of all four

simulations, we adopted a rank algorithm forCNS over the

12 regions in Fig. 5, as discussed in section 3c. Ens-mean

has the best score (2.17), while CFSR has the worst score

(3.58).When we used RMSE for the ranking, results were

essentially the same, with Ens-mean having the best score

(2.17) and CFSR having the worst score (3.58), demon-

strating the robustness of the ranking method.

The discrepancies betweenmodeled runoff andGRDC

product may be from uncertainties in model parameter-

izations, the input meteorological forcing, and/or soil

parameters. Decharme and Douville (2006) pointed out

the importance of daily precipitation intensity in the

runoff simulations. Although monthly precipitation in all

four forcing datasets was corrected by observation-based

datasets, the daily and diurnal variations of precipitation

were the same as the original reanalysis in which the

uncertaintiesmight be large (Bosilovich et al. 2008).Over

regions where runoff is mainly fed by melting snow (e.g.,

eastern/western Siberia, Canada, and the western United

States), the snowfall and the timing of snow melting di-

rectly affect the runoff (Lawrence et al. 2012).

The snowfall/rainfall separation is determined based

on Tair in CLM and hence is affected by the Tair dif-

ferences among the four simulations. Therefore, CLM’s

simulation in runoff is related to its performance in snow

processes, including snowfall, snow accumulation, and

melting. Toure et al. (2016) evaluated offline CLM4-

simulated snow using in situ observed snow depth and

satellite snow cover data and found that the model un-

derestimated the snow depth and showed early snow-

melt. We compared the SWE monthly climatology from

four simulations for 1980–2009 over eastern Siberia and

the western United States (figure not shown) and found

that SWE peaked in April and February, respectively,

which were much earlier than in the observations (e.g.,

Lopez Caceres et al. 2015). This explains themodel runoff

peak in May (vs observed peak in June) over eastern

Siberia and the model runoff peak in March (vs observed

peak in May) over the western United States in Fig. 5.

Moreover, the inconsistency of time periods between

our simulations and the GRDC product, and the density

of observed runoff data used in GRDC, are also re-

sponsible for these differences. Since the observed river

discharge is affected by human activities (e.g., dams and

agricultural, industrial, and household consumptions

of water), the GRDC dataset may also underestimate

the natural annual mean runoff and affect the seasonal

cycle of monthly runoff in Fig. 5. Furthermore, the un-

certainties in the surface meteorological forcing dataset

and the use of a simple water balance model may also

affect the accuracy of composite GRDC product.

d. Snow depth and SWE

For the snow evaluation, the observed monthly

snow depth (537 stations) and SWE (342 stations) in

China during major snow seasons (October–March)

for 1980–2009 were used to evaluate model simulations.

Table 2 shows that the mean R values averaged at all

stations are the worst from CRUNCEP (0.35 for snow

depth and 0.29 for SWE),while results from theother three

simulations are relatively close to each other. Ens-mean

gives the overall best results (0.60 for snow depth and

0.47 for SWE). The R values over most stations are

statistically significant (at p 5 0.05), and the percentage

of station numbers with statistically significant R in

CRUNCEP (85% for snow depth and 71% for SWE) is

less than those from other simulations (more than 95%

for snow depth and more than 84% for SWE). For each

simulation, Table 2 also shows that its performance on

snow depth is better than SWE.

Wehave also compared these performanceswith that of

the Canadian Meteorological Centre (CMC) snow depth

product (Brasnett 1999; Brown and Brasnett 2010) using

the in situ measurements in China. CMC has a mean R of

0.52, which is higher than that of CRUNCEP but lower

than other simulations in Table 2. CMC also shows a

statistically significant R (at p 5 0.05) at 78% of stations

only, which is lower than all four simulations in Table 2.

To further interpret these results from hundreds of

stations, Fig. 6 plots the cumulative distribution function

(CDF) of R for snow depth and SWE. For both panels,

the R values from CRUNCEP are smallest among all

simulations, while the performances of other simu-

lations are close to each other. Ens-mean is overall

better than most of the simulations. For example, the

percentage of stations with R above 0.5 of snow depth is

about 67% for Ens-mean, while this number is 61% for

MERRA, 62% for both CFSR andERAI, and 19%only

for CRUNCEP. Similarly, the percentage of stations

with R above 0.5 of SWE is 46% for Ens-mean, while

this percentage is 47% for MERRA, 38% for CFSR,

45% for ERAI, and just 11% for CRUNCEP. These

results are consistent with those in Table 2.

The deficiencies of model snow process parameteri-

zation and biases in the meteorology forcing dataset are

two major factors that affect the snow modeling. CLM

uses 08C as the critical Tair to separate snowfall and
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rainfall. In the four simulations, we computed the mean

snowfall averaged over all 537 stations with SWE mea-

surements and found that both the snowfall amount and

monthly variability in CRUNCEP were much smaller

than others (figure not shown), which is related to its

poor performance in Fig. 6. Moreover, the inconstancies

between models and observations might also be respon-

sible for the better performance on snowdepth than SWE

in all four simulations. In CLM, whenever modeled snow

is present, SWE is greater than zero. However, in the

observational data, when the observed snow depth is less

than 4mm, SWE is set to be zero. Furthermore, snow

depth inCLM is a diagnostic variable, computed from the

SWE and snow density, which is dependent on Tair and

snow aging. In contrast, the observed snow depth is di-

rectly measured, while SWE is derived from snow depth

and the lookup table snow density.

e. Flux tower measurements

The representativeness of flux tower measurements in

evaluating model gridbox variables is also a challenging

issue. To increase the robustness of our results, we

emphasize the statistics based on the 26 AmeriFlux sites

(Table S1 in the supplemental material). Table 3 lists the

mean R and RMSE of LHF and SHF and their ranking

scores. For SHF, the meanR varies from 0.70 (CFSR) to

0.76 (ERAI), and the mean RMSE varies from 20.85

(CRUNCEP) to 26.85Wm22 (CFSR). For LHF, the

mean R is similar (0.81–0.83), and the mean RMSE is

also similar (19.58–21.45Wm22) among the simulations.

These values are just slightly worse than those (R5 0.84;

RMSE5 17.49Wm22) between the in situ data and the

Jung et al. (2010) product that was constrained by flux

tower measurements (including the 26 AmeriFlux sites

used here). From the ranking scores, the best SHF score

is ERAI forR and Ens-mean for RMSE, while the worst

one is CFSR for both R and RMSE. The best LHF score

is Ens-mean for both R and RMSE, while the worst

score is CRUNCEP for R and MERRA for RMSE.

Based on the average of all four scores (Table 3), Ens-

mean performs best (with a mean score of 2.19) and

CRUNCEP performs worst (with a mean score of 3.40).

A detailed comparison with flux tower in situ mea-

surements was also conducted at the K83 rain forest site

TABLE 3. Mean R and RMSE (Wm22) between the modeled and measured LHF and SHF over 26 AmeriFlux tower sites. The scores are

explained in section 3c, and the smaller the score, the better.

SHF LHF

Mean R Mean RMSE R score RMSE score Mean R Mean RMSE R score RMSE score

CRUNCEP 0.72 20.85 3.73 2.69 0.81 20.82 3.92 3.27

MERRA 0.74 23.65 2.92 3.00 0.82 21.45 3.00 4.00

CFSR 0.70 26.85 3.85 4.15 0.81 19.58 3.00 2.42

ERAI 0.76 23.58 2.12 3.04 0.82 20.48 3.08 3.04

Ens-mean 0.75 22.25 2.38 2.12 0.83 19.66 2.00 2.27

FIG. 6. CDF of the correlation between station observations and model simulations from 1980 to 2009 for

(a) monthly snow depth (using 576 stations) and (b) monthly SWE (using 342 stations) in China.
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over the Amazon (3.028S, 53.978W). Over the relatively

homogeneous tropical rain forest, this site complements

the AmeriFlux sites in Table S1 in the supplemental

material. There is a strong precipitation seasonal cycle,

with the peak in austral summer (Fig. 7a). The average

precipitation is 314mmmonth21 from observation for

the study period, while both GPCP and CRUNCEP are

close to observation with about 32mmmonth21 over-

estimation. Figure 7b shows that all forcing datasets

overestimated monthly Tair, and CFSR products were

closest to the observations with a mean bias of 0.518C.
The seasonal cycle of Tair fromERAI was much greater

than the observational variation. The monthly SWd

from the four products showed different seasonal vari-

ation from each other and from observations (Fig. 7c).

Averaged for the whole period, the mean bias of four

products in SWd varies from 25.40 (CFSR) to

38.98Wm22 (ERAI). While ERAI monthly LWd agreed

very well with observations, the three other products

overestimated it (Fig. 7d).

While the observedmonthly SHFwas around 20Wm22

with small seasonal variations, all products showed stron-

ger seasonal variations and substantially overestimated

SHF (Fig. 7e). This overestimate may be related to

the overestimate of SWd and LWd in Figs. 7c and 7d.

In contrast to the large SHF overestimation, some of

the products showed very small mean LHF bias

(e.g., 21.8Wm22 for ERAI and 2.8Wm22 for

CRUNCEP; Fig. 7f). It is interesting to note that, al-

though the K83 observations were used in the Jung et al.

(2010) product, the mean LHF bias from their product

(24.0Wm22) is still larger in magnitude than that from

ERAI and CRUNCEP (Fig. 7f). Similarly, RMSE of

LHF from Jung et al. (2010) (11.9Wm22) is larger

than that from CRUNCEP (9.9Wm22) and CFSR

(11.5Wm22) products. As discussed in Jung et al. (2010),

their LHF biases may be from the construction method,

the input meteorology dataset, and other factors.

6. Conclusions

Reliable land surface hydrological variables simulated

from LSMs depend on accurate atmospheric forcing

datasets. Because of a lack of high-resolution globally

observed meteorological variables, we have to rely on the

reanalysis products to construct the global LSM forcing

datasets. In this paper, CLM was driven by three

reanalysis-based surface meteorological datasets (i.e.,

MERRA, CFSR, and ERAI), as well as the premerged

reanalysis with CRU product (CRUNCEP). Following

MERRA-Land and ERAI-Land in which only pre-

cipitation was bias corrected, the three reanalysis pre-

cipitation datasets were adjusted by the GPCP monthly

product because of their known deficiencies, and then all

FIG. 7. Comparisons ofmonthlymean quantities amongmodel forcing/simulations andobservations at anAmazonian

site (3.028S, 53.978W) from July 2000 to December 2003. The variables include (a) precipitation (mm), (b) air tem-

perature (8C), (c) downward shortwave radiation (Wm22), (d) downward longwave radiation (Wm22), (e) SHF

(Wm22), and (f) LHF (Wm22) in which the results from Jung et al. (2010) are also included.
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simulations were conducted at the same horizontal reso-

lution 0.58 3 0.58 with the same initialization. The model-

simulatedmonthly surface hydrology variables (e.g., snow

depth, SWE, runoff, and soil moisture), fluxes (e.g., latent

and sensible heat fluxes), and their ensemble mean

were then intercompared and evaluated against vari-

ous observation-based datasets (soil moisture, runoff,

snow depth and SWE, and flux tower measurements).

The model simulations based on three newly con-

structed forcing datasets perform better than the simu-

lation from CRUNCEP (the default forcing dataset in

CLM is partly due to the data availability for a longer

period of time), in particular for soil moisture and snow

quantities. For example, the mean correlation co-

efficient between model-simulated soil moisture and

observations over 226 stations in China is only 0.38 for

CRUNCEP, but 0.47–0.48 for others. This is partially due to

the use of meteorological data from three new reanalyses

(MERRA, CFSR, and ERAI), which are more accurate

than the first-generation reanalysis product (i.e., NCEP–

NCAR reanalyses). This also implies that the realistic at-

mospheric forcing dataset is important for model simula-

tions. Note that this conclusion is based on CLM, andmore

studies using other LSMs are needed to test its robustness.

Furthermore, the CRUNCEP dataset remains useful as it

covers a longer period (from 1948) than the other forcing

datasets (from 1979). The CRUNCEP is also available

from 1901 to 1947, but the NCEP–NCAR reanalyses

product for the same year (1948) was used for the ad-

justment for each year (i.e., interannual variability was

neglected).

Although precipitation in the three new forcing datasets

was adjusted by the same GPCP monthly product, the

global mean differences of hydrological variables are not

always smaller than their differences from CRUNCEP

in magnitude. For instance, the maximumET difference

among the three new simulations is 0.22mmday21,

while the difference is within 0.14mmday21 between

CRUNCEP and others. This indicates that the partitioning

of precipitation between runoff and evapotranspiration is

affected by the combination of all forcing variables.

Because the ensemble mean of multimodel simula-

tions is usually shown to be closer to observations than

individual model simulations, it is widely used in data

developments, drought reconstruction, and climate

change research (e.g., Guo et al. 2007; Wang et al. 2009,

2011; Mueller et al. 2013). In this study, the ensemble

mean is also found to be overall superior to the indi-

vidual forcing simulations, consistent with findings in

previous studies. For example, the meanR derived from

snow depth in China is 0.60 for Ens-mean, which is

larger than those from individual simulations, varying

from 0.35 (CRUNCEP) to 0.58 (ERAI). Similar

performances were also found in both SWE and soil

moisture simulations. The global runoff from Ens-mean

(0.85mmday21) is also closer to GRDC composite

dataset (0.82mmday21) than those from individual

simulations. These results further demonstrate the value

of using ensemble mean in the representations of land

surface hydrology and heat fluxes.

Based on the ensemble mean, the energy and water

balance over global land (608S–908N) is precipitation

(2.27mmday21) nearly balanced by ET (1.39mmday21)

and Ro (0.85mmday21), and net radiative flux

(84.17Wm22) nearly balanced by SHF (42.83Wm22)

and LHF (40.31Wm22). The above ET estimate is

consistent with the recent estimate of Mueller et al.

(2013) (1.35mmday21) but smaller than earlier esti-

mates [1.59mmday21 from Mueller et al. (2011) and

1.57mmday21 from Jung et al. (2010)]. Our estimates of

the annual mean SHF, LHF, and Rn from Ens-mean are

also consistent with the multiproduct means from

Jiménez et al. (2011).
The accuracy of the offline LSM simulations depends

on both model parameterization schemes (including

input parameters) and the atmospheric forcing datasets.

Previous projects on offline LSMs, such as GLDAS

(Rodell et al. 2004) and GSWP (Dirmeyer et al. 1999,

2006), were all based on the same forcing dataset to

drive multiple LSMs. They focused on simulations due

to the model parameterization discrepancy, but simu-

lations due to uncertainties in the atmospheric forcing

dataset were less concerned (Guo et al. 2006). Com-

plementary to these efforts, this study emphasized the

impact of uncertainties in forcing datasets on the CLM

simulations. It is found that the spread of the global

mean ET and Ro from the four simulations is much

smaller than that from 13 models in GSWP-2. While this

could be caused by the much smaller number of forcing

datasets used in this study, it could also imply that the

diversity in model parameterizations (rather than in

atmospheric forcing dataset) has a dominant effect on

the dispersion of model results, and efforts should be

made to improve the LSM parameterizations. Commu-

nity efforts (like GSWP and GLDAS) are needed in the

future to run several land models driven by different

atmospheric forcing datasets to separate the impacts of

land models and forcing dataset.

Besides model deficiencies and uncertainties in atmo-

spheric forcing dataset, the mismatch between model

gridbox values and point measurements is another reason

for the differences betweenmodel results and observation-

based products. To partially avoid this issue and obtain

robust results, we have taken three approaches in model

evaluations: using the statistics from point measurements,

using the spatial average of point measurements over
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specific regions, and combining point measurements with

observation-based gridded datasets.

In this paper, we have produced the global 0.58 3 0.58
land surface hydrology, fluxes, and other land surface

quantities from 1980 to 2009. Given the uncertainties

in bothLSMsandatmospheric forcingdatasets, our datasets

are complementary to those produced by different LSMs

using the same atmospheric forcing dataset (e.g., from

GLDAS and GSWP). Therefore, our datasets from 1979

to 2009 (available from the authors), including both the

four forcing datasets and their simulations, can be com-

bined with those from GLDAS and GSWP for a variety

of applications, for example, for the study of global or

regional hydrological cycle, soil moisture memory, and

soil moisture–groundwater interactions.
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