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Abstract This study aims to provide an assessment of the effects of anthropogenic (ANT) forcings and
other external factors on observed increases in extreme precipitation over China from 1961 to 2005.
Extreme precipitation is represented by the annual maximum 1 day precipitation (RX1D) and the annual
maximum 5 day consecutive precipitation (RX5D), and these variables are investigated using observations
and simulations from the Coupled Model Intercomparison Project phase 5. The analyses mainly focus on the
probability-based index (PI), which is derived from RX1D and RX5D by fitting generalized extreme value
distributions. The results indicate that the simulations that include the ANT forcings provide the best
representation of the spatial and temporal characteristics of extreme precipitation over China. We use the
optimal fingerprint method to obtain the univariate andmultivariate fingerprints of the responses to external
forcings. The results show that only the ANT forcings are detectable at a 90% confidence level, both
individually and when natural forcings are considered simultaneously. The impact of the forcing associated
with greenhouse gases (GHGs) is also detectable in RX1D, but its effects cannot be separated from those of
combinations of forcings that exclude the GHG forcings in the two-signal analyses. Besides, the estimated
changes of PI, extreme precipitation, and events with a 20 year return period under nonstationary climate
states are potentially attributable to ANT or GHG forcings, and the relationships between extreme
precipitation and temperature from ANT forcings show agreement with observations.

1. Introduction

Extreme precipitation often causes greater economic losses and more destructive disasters than mean cli-
matic conditions [Handmer et al., 2012]. For example, Beijing suffered an extreme precipitation event on 21
July 2012 that caused 78 deaths and economic losses of 11.6 billion yuan [Sun et al., 2012]. Previous studies
have documented that the atmospheric saturation vapor pressure should scale with temperature according
to the Clausius-Clapeyron (CC) equation [Trenberth et al., 2003; Hardwick Jones et al., 2010]. Since extreme pre-
cipitation is closely related to moisture content, the evidence indicates that extreme precipitation worldwide
is increasing due to global warming [Groisman et al., 2005; Alexander et al., 2006; Westra et al., 2013].
Furthermore, the occurrence of extreme precipitation events is projected to increase significantly in the
future due to additional warming [Sun et al., 2010; Chen et al., 2012a; Chen and Sun, 2015]. Given the impor-
tance of changes in extreme precipitation, the question arises as to whether anthropogenic activity or other
factors have contributed to the intensification of extreme precipitation.

Numerous studies have suggested that human influence intensifies extreme precipitation events on a
global scale [Min et al., 2009, 2011; Zhang et al., 2013]. Specifically, the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change indicated that anthropogenic forcing has intensified extreme
precipitation globally with medium confidence [Bindoff et al., 2013]. However, the evidence has only
demonstrated an anthropogenic contribution on a global scale. Few studies have considered subcontinen-
tal scales due to the reduction in detectability caused by lower signal-to-noise ratios [Zhang et al., 2013].
Despite the substantial uncertainties and limitations associated with such studies, it is also necessary to
assess anthropogenic effects on extreme precipitation at national scales, as this can improve our knowl-
edge of model performance at smaller scales and our ability to project future changes in extreme precipita-
tion. Further, it helps us to provide the information needed to diminish the potential risks.

There are different approaches to detecting and attributing climatic events and changes [Stott et al., 2010,
2016]. For example, Fischer and Knutti [2015] employed the “fraction of attributable risk” (FAR) and the
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“probability ratio” (PR) to evaluate the effects of human activity on heavy precipitation events worldwide. The
PR is defined as P1/P0, and the FAR is defined as 1� (P1/P0), where P0 (or P1) is the probability of exceeding a
certain quantile during the preindustrial control period (or the given period). Schaller et al. [2016] used the
“end-to-end”method to assess the degree of human influence on winter floods in southern England during
2014. In this study, physical principles are embodied in climate models that can directly estimate the climatic
response to external forcings [Sun et al., 2016]. In our study, we use the rigorous optimal fingerprint method
to detect and assess attributable changes in extreme precipitation response to external forcings [Allen and
Tett, 1999; Allen and Stott, 2003]. This method provides specific analyses of the associations between external
forcings and observed climate changes. This optimal detection method has been widely used to detect and
attribute temperature changes both globally [Ribes and Terray, 2013] and regionally [Zwiers et al., 2011; Sun
et al., 2014; Xu et al., 2015; Sun et al., 2016]. Additionally, Min et al. [2011] primarily used the fingerprint
method to detect and attribute probability-based extreme precipitation on a global scale. Based on this
method, Mondal and Mujumdar [2015] successfully identified the effects of the anthropogenic forcings on
extreme precipitation over India.

Previous studies have documented that extreme precipitation events during the past decades have
intensified over most regions of China [Chen et al., 2012b; Wang et al., 2012; Sun and Ao, 2013; Liu
et al., 2015; Fan and Chen, 2016]. The influence of anthropogenic effects has been detected in this
change, but with large uncertainties [Chen and Sun, 2017]. Thus, more work is needed to investigate this
aspect. Therefore, the rigorous optimal fingerprint approach [Allen and Tett, 1999; Allen and Stott, 2003] is
applied in this study to detect and attribute the intensification of extreme precipitation events
across China.

2. Data

The observational data sets employed in this study are the gridded daily precipitation data set and the
gridded monthly temperature data set (hereafter referred as CN05) developed by Wu and Gao [2013].
CN05 was produced via interpolation using the “anomaly approach” and employed 2416 stations in
China, and it has a high spatial resolution of 0.25° × 0.25°. For detailed information about the process
of constructing and interpolating these data sets, please refer to Xu et al. [2009]. In this study, only
the data sets from 1961 to 2005 are used to conform to the different time periods covered by
model simulations.

For the purpose of detection and attribution analyses, 15 models from the Coupled Model Intercomparison
Project phase 5 (CMIP5), including different runs, were obtained from the website of the Earth System Grid
gateway hosted by the Program for Climate Model Diagnosis and Intercomparison. Multimodel simulations
for different experiments that represent historical natural forcing (NAT; e.g., volcanic eruptions and solar
activity), historical greenhouse gases (GHG), and historical natural plus anthropogenic forcings (ALL) are
employed to investigate the effects of these factors on the intensification of extreme precipitation over
China. Table 1 lists relevant information about these models, which provide gridded data sets of historical
daily precipitation from the NAT, ALL, and GHG simulations and unforced control (CTL) simulations; the
CTL simulations include 188 segments of a nonoverlapping 45 year sample. Furthermore, the historical
anthropogenic forcings (ANTs; ALL minus NAT) and other anthropogenic forcings (OA; ANT minus GHG,
including aerosols and land use, as well as other factors) are also considered in our study. We assume that
the differences between the ALL and NAT simulations represent the linearly additive response to the external
forcings [Zhang et al., 2013]. Thus, ANT is estimated as ALL minus NAT. Since ANT considers OA in addition to
GHG, OA is indirectly estimated as ANT minus GHG. Moreover, the corresponding gridded monthly tempera-
ture data sets used in this study are available.

Previous studies have used various definitions of extreme precipitation, such as given thresholds and percen-
tile thresholds. Here the annual maximum 1 day precipitation (RX1D) and the annual maximum 5 day conse-
cutive precipitation (RX5D) will be analyzed. RX1D represents the magnitude of extreme precipitation,
whereas RX5D is the cumulative value, which is relevant in assessing the risks of flooding disasters. Both
metrics are good indicators of extreme precipitation events [Westra et al., 2013]. In general, the estimation
of spatially averaged extreme precipitation is uncertain due to high spatial variability and sparse observa-
tional network but we can circumnavigate this issue by transforming annual extreme precipitation values
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into probability-based indices (PIs) [Min et al., 2011]. As is widely known, the changes in extreme precipitation
over China vary among the different regions [Wang et al., 2013; Ren et al., 2015; Li et al., 2016a, 2016b]. Thus,
the PI, which is derived from RX1D and RX5D, will be used to reduce the uncertainty of the spatial averages
and improve the intercomparability of the data sets.

Here it should be noted that, because of the absence of measurement sites over most of the Tibetan Plateau
that is located in southwestern China, the data sets covering the Tibetan Plateau are masked out in both the
observations and the models.

3. Methods
3.1. Probability-Based Index Calculation

We have preprocessed the observational data sets and the individual model simulations by interpolating
daily precipitation values onto 1.5° × 1.5° grid cells using the first-order conservative remapping method.
The observed and simulated extreme precipitation metrics (RX1D and RX5D) under different forcings are
then calculated from the 1.5° × 1.5° gridded daily precipitation data sets.

Overall, the characteristics of changes in extreme precipitation over China display a regional dependence
[Chen et al., 2012b]. To improve the comparability and representativeness of our research, the PI is derived
from the extreme precipitation metrics (RX1D and RX5D) by fitting the generalized extreme value (GEV) dis-
tribution to the data from each grid point within China [Min et al., 2011; Zhang et al., 2013; Zhang and Zwiers,
2013]. The PI is estimated as the result of the cumulative distribution function (CDF) derived from the GEV
distribution of RX1D and RX5D, as shown in equation (1) [Wilks, 2011]. The CDF of the GEV is a function of
three variables, the location (ξ), scale (β), and shape (κ), which can be estimated using the maximum likeli-
hood method [Martins and Stedinger, 2000]. Clearly, the PI ranges from zero and unity, and stronger extreme
precipitation yields a larger PI. Accordingly, we calculate in advance the observed and simulated PI values for
RX1D and RX5D at each grid point.

PI xð Þ ¼ exp 1þ κ x � ξð Þ
β

� ��1
κ

8><
>:

9>=
>;; κ≠0; 1þ κ x � ξð Þ

β
> 0

PI xð Þ ¼ exp � exp � x � ξð Þ
β

� �� �
; κ ¼ 0

(1)

Table 1. List of the 15 Climate Models That Contributed Historical Simulations to CMIP5a

NAT (No. of Runs) ALL (No. of Runs) GHG (No. of Runs) CTL (No. of 45 Year Chunks)

BCC-CSM1.1 1 3 1 11
BNU-ESM 1 1 1 12
CanESM2 5 5 5 24
CCSM4 4 3 3 3
CNRM-CM5 6 10 6 18
CSIRO-Mk3.6.0 5 10 5 11
GFDL-CM3 3 5 3 17
GFDL-ESM2M 1 1 1 11
HadGEM2-ES 4 4 4 12
IPSL-CM5A-LR 3 6 6 22
IPSL-CM5A-MR 3 3 3 6
MIROC-ESM 3 3 3 14
MIROC-ESM-CHEM 1 1 1 5
MRI-CGCM3 1 5 1 11
NorESM1-M 1 3 1 11
Total 42 63 44 188

aThese simulations include NAT (natural forcing), ALL (natural plus anthropogenic forcing), and GHG (greenhouse gas
forcing) runs covering the period from 1961 to 2005 and CTL (preindustrial control) simulations. The numbers in the first
three volumes represent the ensemble members with external forcings, and the rightmost volume indicates the number
of 45 year nonoverlapping sections of the CTL runs.
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3.2. Detection and Attribution Method

The optimal fingerprint method provides rigorous attribution and detection analysis of extreme precipitation
over China. It is described by the following regression model [Ribes et al., 2013]:

y ¼ ∑
n

i¼1
βixi þ ε (2)

exi ¼ xi þ εxi (3)

In equation (2), y denotes the observations, xi is the climatic response to the ith external forcing employed
(including NAT, GHG, ANT, OA, and ALL), βi is the scaling factor that adjusts the fingerprint value to produce
the best match to the observations, n denotes the number of external forcings considered, and ε represents
the internal climate variability (a residual term that is estimated from the CTL simulations). Here we assume
that xi is unknown, and exi is calculated from the ensemble mean that has a random term related to internal
variability (εxi ; see equation (3)). To examine the reliability of the residual term, the corresponding residual
consistency test [Allen and Stott, 2003] is conducted in our study. Notably, the CTL simulations are divided
into 188 segments representing nonoverlapping 45 year samples. Half of these segments are used to esti-
mate the regression coefficients, and the other half are used to conduct a residual consistency test to avoid
spurious detections.

In this study, the attributable PI changes are investigated by multiplying the PI trends by the corresponding
5–95% marginal scaling factors, and the results are further multiplied by the 45 year period. The observed PI
changes and its 90% confidence intervals (5%–95%, based on the least squares method) are calculated as the
PI trends multiply by the corresponding 45 year temporal coverage. In addition, we would like to determine
how RX1D and RX5D might change under nonstationary climatic conditions. Thus, we further convert these
attributable and observed PI changes to possible percent changes in extreme precipitation.

Evidence indicates that extreme precipitation over China intensified (see section 4.1) from 1961 to 2005. Thus,
the GEV distribution based on stationary climatic conditions should extend to nonstationary climatic condi-
tions [Katz, 2013]. Due to the enhanced internal variability and intermodel uncertainty seen at regional scales,
it is difficult to determine how PI changes within each grid cell within China respond to different forcings.
Thus, we assume that only the location parameter (ξ) in equation (1) changeswith time at each grid point over
China, and the same attributable PI changes (δPI) are applied to all of the grid cells [Zhang et al., 2013]. Herewe
first calculated the median value of extreme precipitation (X50, where PI equals 0.5) at individual grid cell over
China. Then, the two new location parameters ξ0 (which corresponds to the year 1961) and ξ1 (which corre-

sponds to the year 2005) are computed as that X50 has probabilities of 0:5� δPI
2 and 0:5þ δPI

2 , and the percent

change in the median value of extreme precipitation is computed as 100� ξ1�ξ0ð Þ
ξ0

at each grid point. Finally, we

can compute the area-weighted average of the percent change in the median value of extreme precipitation
over China, and the confidence ranges spanning the 90% confidence level are obtained in the same way.

In general, the return value and return period provide valuable information for assessing the risks of extreme
events [Aghakouchak et al., 2014], and an event with a return period of T years corresponds to a 1/T probabil-
ity of occurrence in any particular year [Cooley et al., 2007]. The return period is calculated based on the GEV
distribution to discuss changes in extreme events under nonstationary climatic conditions. As shown in
equation (4), the return period R(x) can be explained by the CDF value F(x), whereω= 1 year�1 is the average
sampling frequency [Wilks, 2011]. Given a particular return period, it is easy to compute the return values and
vice versa. Based on the above assumptions, we use equation (4) to compute the 20 year return values at
each grid point with the location parameter associated with the beginning of the study period ξ0 (which
corresponds to the year 1961) in equation (1). Similarly, the new return periods of these return values are
computed using the GEV distribution with the location parameter associated with the end of the study period
ξ1 (which corresponds to the year 2005). Estimates of the attributable and observational area-weighted
average of return period are then obtained, and confidence ranges that span the 90% confidence level are
calculated in the same way.

R xð Þ ¼ 1
ω 1� F xð Þ½ � ¼

1
ω 1� PI xð Þ½ � (4)
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4. Results
4.1. Characterizing Extreme Precipitation Over China

Figure 1 shows the spatial pattern of annual extreme precipitation over China from 1961 to 2005, as calcu-
lated from CN05, and the corresponding PI trends. The amount of extreme precipitation decreases signifi-
cantly from the southeast to the northwest in China based on RX1D (Figure 1a) and even more
significantly when RX5D is considered (Figure 1c). In terms of trends in the PI, positive values indicate stron-
ger extreme precipitation events, while negative values indicate weaker events. There is a clear overall
increasing trend in the PI in most regions of China; 64% of the regions have positive RX1D values (Figure 1b),
and 57% of the regions have positive RX5D values (Figure 1d). However, the spatial distribution of the PI
trend shows a strong regional dependence. The regions that display decreasing trends are mainly located
in the northern, northeastern, and eastern-southwestern parts of China, as well as the coastlines of southeast
China, in accordance with previous studies [Zhai et al., 2005; Chen et al., 2012b; Wang et al., 2012].
Additionally, RX5D exhibits a broadly decreasing trend in the regions of central China.

Figure 2 presents the spatial distribution of trends in the PI for RX1D from the multimodel ensemble mean
(MME), and the results for RX5D are shown in Figure 3. The results from the NAT simulations show weak
trends almost everywhere, with low intermodel agreement across China (Figures 2a and 3a). In detail, the
decreasing trends seen in some parts of northern China are consistent with observations, although they have
smaller amplitudes. However, the decreasing trends seen in northwestern and southeastern China are oppo-
site to those seen in the observations, resulting in a weak pattern correlation coefficient of 0.03 between
CN05 and the NAT simulations for RX1D and a pattern correlation coefficient of �0.01 for RX5D over
China. The results from the GHG simulations show an overall increasing trend (Figures 2b and 3b), and high
intermodel agreement is seen in most regions of China. Increasing trends can be clearly seen in northwestern
and southeastern China in the observations. However, the GHG simulations fail to reproduce the decreasing
trends observed in northeastern China and some parts of southwestern China. The pattern correlation coeffi-
cients between the results of the GHG simulations and CN05 are 0.28 for RX1D and 0.19 for RX5D, both of
which are significant at the 99% confidence level, based on Student’s t test. Compared to the GHG

Figure 1. Climatological spatial distribution of observed extreme precipitation from 1961 to 2005 for (a) RX1D and (c) RX5D
and (b and d) the corresponding PI trends. Units for RX1D and RX5D: mm d�1.
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simulations, the ANT results display substantially improved performance and provide more explicit spatial
information than the GHG simulations. As shown in Figures 2c and 3c, regions with high intermodel
agreement are located in the northwestern and western-northern parts of China and the Yangtze River
region, and these results resemble the observations. Generally, the ANT results show positive trends in most
regions, but they show negative trends in the northeastern, eastern-southwestern, and southeastern coastal
regions of China. In contrast, the OA results exhibit an overall decreasing trend inmost regions of China, espe-
cially over northeastern and eastern-southwestern China. However, large differences can be observed among
themodels across China. The pattern correlation coefficient between the OA results and CN05 is insignificant,
but the influence of the OA forcings, which is unfavorable for the increasing trend in the PI over northeastern
and southwestern China, cannot be neglected (Figures 2d and 3d). Consequently, the OA forcings play an
important role in offsetting the increasing trend seen in some regions due to GHG, and the ANT results dis-
play better performance than the GHG simulations. The significant pattern correlation coefficients between
the ANT results and CN05 are 0.32 for RX1D and 0.33 for RX5D, respectively. The results from the ALL simula-
tions (Figures 2e and 3e) present a pattern similar to that of the ANT results, with higher pattern correlation
coefficients of 0.35 for both RX1D and RX5D. Regions with obvious increasing trends display high intermodel

Figure 2. Spatial distribution of the PI trend based on RX1D from 1961 to 2005 established using an MME based on (a) nat-
ural (NAT) forcings, (b) greenhouse gas (GHG) forcings, (c) anthropogenic (ANT) forcings, (d) other anthropogenic (OA)
forcings, and (e) anthropogenic plus natural (ALL) forcings. Values represent spatial correlations between the MME, which
consists of 15 models, and CN05. The black dotted areas indicate that more than 60% of the 15 models share the same sign
as the trend seen in the MME.
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agreement, which also presents a considerable similarity with the observations. However, offset by the
decreasing trend in northwest and southeastern China caused by the NAT forcings, the amplitudes over
these regions seen in the ALL simulations are weaker than those seen in the ANT results.

To characterize the temporal variation in extreme precipitation, Figure 4 displays 5 year mean, spatially aver-
aged PI anomalies over China. The temporal evolution of the PI reflects a general increase from 1961 to 2005,
but it includes a profound decrease that began in the early 2000s over China (Figures 4a and 4b). The upward
trends in the MME seen in the GHG, ANT, and ALL simulations are substantially similar to those of the obser-
vations, in spite of their weaker amplitudes. However, the NAT simulations show no obvious trend from 1961
to 2005, whereas the OA results show a decreasing trend. These results are quite reliable because the spatially
averaged temporal variations for the individual external forcings have the same sign as the corresponding
spatial patterns, especially in those regions with high intermodel agreement (see Figures 2 and 3). Thus,
the spatially averaged PI anomalies over China represent the leading spatial information and temporal varia-
tions in the PI trends, making the analyses of detection and attribution quite reliable. As with the spatial pat-
tern, we also focus on the intermodel agreement for each forcing, and the results of the various simulations
indicate that 60% (73%) of OA, 53% (60%) of NAT, 93% (93%) of GHG, 93% (73%) of ANT, and 100% (93%) of
ALL have the same signs as the trends seen in the PI for RX1D (RX5D). The results from these models are then
chosen for further analysis in Figures 4c and 4d. Clearly, the major features are similar to those of Figures 4a
and 4b, but some of the magnitudes are higher.

Figure 3. Same as in Figure 2 but for RX5D.
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In addition to the spatial and temporal characteristics of the PI trends, we are also interested in the climato-
logical conditions of the PI anomalies during different decades. Because the spatially averaged PI increased
by approximately 5% from 1961 to 2005, we divide this increment into two equal parts (0.025). Figure 5
shows the spatial distribution of the PI anomalies (relative to the climatology of 1961–1990) that are lower
than�0.025 from 1961 to 1980 and higher than 0.025 from 1986 to 2005. During the first period, the regions
with lower PI values are mainly located in northwestern China, the Yangtze River Valley, and parts of north-
eastern China (Figures 5a and 5c). These regions correspond to the regions with higher PI values in the latter
period (Figures 5b and 5d). In turn, these regions indicate the maximum increase in the PI over China. Thus,
the increments over these regions subsequently account for the increasing trend in the PI averaged over
China. Likewise, the ANT results also indicate an increasing trend in the PI over northwest China, but they
underestimate the PI anomalies and do not reproduce the increasing trend over the Yangtze River Valley
and northeastern China (Figure 6). All of the pattern correlation coefficients between the ANT results and
CN05 are significant at the 99% confidence level, based on Student’s t test. However, we note that the inter-
model agreement is quite low for both decades, which mainly results from the smaller increment of the PI
obtained from the ANT results. In fact, the increment of the PI values estimated using the ANT results is about
half that of CN05 (see Figure 4), and regions with high intermodel agreement resemble the observations if we
focus on the 2.5% increment (see Figure S1 in the supporting information). The results from the ALL simula-
tions show a pattern similar to that of the ANT results; however, the amplitude is weaker (figures not shown).
In addition, the GHG simulations show less consistency with the observations because, in this case, the
regions that show major increases in the PI are located between the latitudes of 28 and 38°N over China,
rather than in northwestern China (figures not shown).

In general, some of the forcings (e.g., ANT, GHG, and ALL) can account for the observed changes both spa-
tially and temporally, whereas the others cannot. The detection analysis in the following section is conducted
based on the area-averaged temporal series that can be calculated from the selected models.

4.2. One-Signal and Two-Signal Detection of the PI

To detect the effects of a given external forcing on changes in extreme precipitation over China, optimal fin-
gerprint methods are employed. According to equations (2) and (3), the 5 year mean-observed PI series are

Figure 4. Five-year mean temporal series of the spatially averaged PI anomalies (relative to the climatology of 1961–1990)
over China from 1961 to 2005 for (a) RX1D and (b) RX5D, based on the MME containing 15 models. Values in the par-
entheses in Figures 4a and 4b represent the degree of intermodel agreement based on the individual model results for
each forcing, (c and d) while RX1D and RX5D based on theMME containing the selectedmodels are displayed, respectively.
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regressed onto the MME consisting of the 15 models and the MME containing the selected models, both of
which employ the different external forcings (ALL, ANT, GHG, NAT, and OA). The amplitude of the scaling
factor explains the fingerprint of the external forcing present in the observations. Its uncertainty range
(5%–95%) should be greater than zero to ensure that the PI is detectable in the model simulations.
Moreover, if the uncertainty range also includes unity, the model simulation is considered to be in
accordance with observations.

Figure 7 shows the scaling factors of the 5 year mean PI series for the MME that includes the selected models.
The results obtained using the MME that includes all 15 models are similar, except for their larger uncertainty
ranges (see Figure S2). The standard residual consistency test indicates that the null hypothesis of the obser-
vational PI being equal to that of the MME cannot be rejected at the 90% confidence level (all of the p values
are larger than 0.1), suggesting that these regression models fit the data well. For single-signal cases, the GHG
signal is detectable in RX1D (Figure 7a) but not in RX5D (Figure 7c). The best estimate of the GHG fingerprint
in RX1D is near unity, indicating good consistency with the observations. In contrast, the effects of the OA
forcings are not detected in RX1D and RX5D, and the 90% confidence intervals of the scaling factors are nega-
tive. The negative scaling factors suggest the opposing effects of anthropogenic aerosols, which partially off-
set the increasing role of the GHG forcings. Because the OA-only regression model lacks the primary
component of a predictor, it is an invalid regression model. Despite the failure to detect the OA forcings in
both RX1D and RX5D, as well as the failure to detect the GHG forcings in RX5D, their combined forcings
(ANT) are detectable. The 90% confidence intervals of the scaling factor for the ANT results exclude zero
and include unity in both RX1D (Figure 7a) and RX5D (Figure 7c). The best estimate is larger than unity, sug-
gesting an underestimation of the observed PI changes. The resulting spatial patterns and temporal series
also support these analyses. Accordingly, the effects of the OA forcings optimize the fingerprint of the ANT
forcings detected in the observations compared to the GHG simulations, whereas the GHG simulations pri-
marily account for the detected responses in the ANT results. However, the 90% uncertainty ranges of the

Figure 5. The observed spatial distribution of the averaged PI anomalies (relative to the climatology of 1961–1990) during
the earlier period (1961–1980) with values less than �0.025 for (a) RX1D and (c) RX5D and during the later period
(1986–2005) with values greater than 0.025 for (b) RX1D and (d) RX5D.
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fingerprints describing the responses to the ALL and NAT forcings include zero in both RX1D (Figure 7a) and
RX5D (Figure 7c). Thus, these experiments fail to detect the trend in the PI over China. Here the exclusion of
the primary predictor (e.g., the ANT forcings) renders the NAT-only regression model invalid [Zhang et al.,
2013]. Consequently, the NAT forcings are likely responsible for the failure to detect using the ALL simula-
tions. Similarly, we further focus on the detectability response to different forcings when the internal variabil-
ity is doubled (the dashed lines in Figures 7a and 7c), and the results indicate that all of the simulations fail to
detect the PI changes over China, indicating that a decline in robustness occurs as the internal variability
becomes stronger.

To separate the individual contributions from the combined effects, two-signal analyses are also carried out
in our study (Figures 7b and 7d). We focus on two combinations that include the ANT and NAT forcings and
the GHG and no-GHG forcings (including the NAT and OA forcings). The best estimate of ANT in the two-
signal case is larger than unity, also suggesting a possible underestimation of the response to the ANT for-
cings by the models. However, the scaling factor associated with the NAT forcings includes zero, indicating
that the NAT forcings cannot be detected in the two-signal analyses. Consequently, the ANT and NAT forcings
cannot be jointly detected, but the effects of the ANT forcings can be separated from those of the NAT for-
cings in the two-signal analyses. For the combination of the GHG and no-GHG forcings, the ranges of both of
the scaling factors include zero; thus, these forcings are not detected. In addition, the GHG and no-GHG for-
cings cannot be jointly detected. Hence, only the ANT forcings provide a satisfactory explanation of the
observed changes in the PI from 1961 to 2005. Although the GHG forcings can explain the observed changes
in the PI in the single-signal analyses using RX1D, its effect cannot be separated from those of the no-GHG
forcings. Additionally, the fingerprints of each forcing are still not detectable with doubled internal variability,
as reflected by the dashed lines in Figures 7b and 7d.

4.3. Attributable Changes Under Nonstationary Climate Conditions

The optimal fingerprint method provides us with knowledge of the detection of the PI trends in response to
external forcings. In the following, we further estimate changes in extreme precipitation using simulations

Figure 6. Same as in Figure 5 but based on the ANT results derived from the MME. The values represent the pattern
correlation between the ANT results and CN05, and the black dotted areas indicate that more than 60% of the 15 models
have the same sign as the trend in the MME.
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that include the ALL, ANT, NAT, GHG, and OA forcings to reveal their corresponding influences. To address
this issue, we first estimate the attributable PI changes from 1961 to 2005 based on the selected models
(Figure 8). The results based on the 15 models are similar, except that the ranges associated with NAT vary
among the models (see Figure S3). PI is observed to increase by 5.14% (0.29% to 10%) for RX1D (Figure 8a)
and 3.75% (�1.89% to 9.39%) for RX5D (Figure 8b), indicating that the intensification of RX1D is larger.
More information referring to the estimation of δPI can be found in section 3.2. δPI is estimated to be
6.61% (2.32% to 11.26%) for the ANT forcings and 5.70% (1.54% to 9.97%) for the GHG forcings, both of

Figure 7. Scaling factors resulting from the optimal fingerprint analyses of the PI values for (a and b) RX1D and (c and d)
RX5D using single-signal (Figures 7a and 7c) and two-signal (Figures 7b and 7d) analyses, respectively. The solid lines
indicate the 5–95% uncertainty range of the scaling factor, and the dashed error bars are the results for doubled internal
variability. The two dashed horizontal black lines represent the unity and zero. The results are based on theMME containing
the selected models.

Figure 8. Best estimates of observed PI trends and the attributable changes in the PI due to the ALL, ANT, NAT, GHG, and
OA forcings from 1961 to 2005 for (a) RX1D and (b) RX5D. The error bars indicate the 90% confidence intervals. Unit: %.
The results are based on the MME containing the selected models.
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which are consistent with observations. Here δPI of the OA forcings is only 0.44% (0.05% to 0.85%), which is
much smaller when compared to the GHG forcings. Despite the negligible PI changes attributed to the OA
forcings, the joint role of the OA and GHG forcings leads to a larger increase in the attributable PI changes
obtained using the ANT results than that obtained using the GHG simulations. Furthermore, the estimate
of the PI changes attributable to the NAT forcings exhibits a decreasing trend, weakening the increasing
trend seen in the ANT results and resulting in a lower median value and a reduced consistency with the
observations in the ALL simulations. For the attributable PI changes using RX5D (Figure 8b), δPI is
estimated to be 5.65% (0.68% to 10.89%) for the ANT forcings and 4.12% (�0.69% to 9.05%) for the GHG
forcings, and these results also display good consistency with the observations. The changes in OA are
negligible, but the combined effect of the GHG and OA forcings also produces a larger increase in the ANT
results than in the GHG simulations. Similar to RX1D, the PI changes attributable to the NAT forcings are
almost negative for RX5D, partially offsetting the positive changes caused by the ANT forcings and thus
leading to underestimates of the PI changes attributable to the ALL forcings. Accordingly, the ANT forcings
(including the GHG forcings) played an emerging role in producing the observed PI changes from 1961 to
2005. Despite the negligible value attributable to the OA forcings, the joint role of the GHG and OA
forcings is larger than that of the GHG forcings. Moreover, the negative δPI due to the NAT forcings
weakens the effects of the ANT forcings, leading to a reduction in the PI changes attributable to the ALL
forcings than that associated with the ANT forcings.

In general, changes in extreme precipitation are more intuitive when compared to changes in the PI. We
therefore convert these attributable PI changes to the attributable percent changes in extreme precipita-
tion response to different forcings. Given the limitations imposed by the restrictions of model data sets
at small scales indicated in section 3.2, it is difficult to detect and attribute the PI changes within each
grid cell over China. To simplify the problem, we assume that, under nonstationary climate conditions, all
of the grid cells over China share the same δPI value calculated in the above analyses [Zhang et al.,
2013]. In addition, all of the locations have their individual GEV distributions. Based on these assump-
tions, the possible percent changes in RX1D and RX5D are analyzed and compared. Figure 9 shows
the estimates of the observed and attributable percent changes in extreme precipitation for the selected
models. The results for the 15 models are similar (see Figure S4). Extreme precipitation is estimated to
have increased by 3.90% (0.22% to 7.76%) for RX1D (Figure 9a) and 2.77% (�1.37% to 7.13%) for RX5D
(Figure 9b) over the study period. The attributable percent changes in extreme precipitation for RX1D
(Figure 9a) are estimated to correspond to increases of 5.05% (1.73% to 8.79%) for the ANT forcings
and 4.33% (1.15% to 7.73%) for the GHG forcings, both of which are in accordance with observations.
The responses attributable to the ANT forcings are stronger than those attributable to the GHG forcings,
which also resulted from the combined effect of the GHG and OA forcings. In addition, due to the offset
produced by the NAT experiment, the attributable value for the ALL forcings is only 2.50% (�0.68% to
5.90%), which is smaller than that of the observations. Additionally, the attributable changes in extreme
precipitation for RX5D (Figure 9b) are estimated to represent increases by 4.21% (0.50% to 8.33%) for the

Figure 9. Same as in Figure 8 but for the observed and attributed changes in extreme precipitation under nonstationary
climate conditions from 1961 to 2005 for (a) RX1D and (b) RX5D. Units: %.
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ANT forcings, 3.05% (�0.50% to 6.86%) for the GHG forcings, 0.13% (0.44% to �0.17%) for the OA
forcings, 0.93% (�2.60% to 4.65%) for the ALL forcings, and �0.84% (�2.33% to 0.60%) for the NAT
forcings. Therefore, RX1D exhibits a larger percent increase than RX5D, as with the attributable PI
changes. Accordingly, the results of the ANT and GHG simulations are coherent with observations
concerning the percent changes in extreme precipitation, whereas the results for the ALL simulations
are similar but less significant. Although the NAT forcings are associated with smaller attributable
values, it cannot be neglected because it can influence ALL through the combined effect of NAT and
ANT. Similarly, despite the small attributable values associated with the OA forcings, these forcings
can influence ANT through the combined effect of OA and GHG. Thus, the estimated percent increase
in extreme precipitation can be attributed to the anthropogenic (ANT, including GHG) forcings to a
great extent.

Figure 10 demonstrates the spatially averaged return period in 2005 that corresponds to 20 year events
in 1961 based on the selected models. Similar results are obtained when the 15 models are used (see
Figure S5). For RX1D (Figure 10a), the observed return period is estimated to be 17 years (15 years to 20 years;
90% confidence intervals), indicating an increased probability of extreme precipitation in recent decades. The
return periods for the different forcings are as follows: 16 years (14 years to 19 years) for ANT, 17 years
(15 years to 19 years) for GHG, 20 years (20 years to 20 years) for OA, 18 years (16 years to 21 years) for
ALL, and 21 years (19 years to 22 years) for NAT. In addition, RX5D exhibits longer return periods than
RX1D (see Figure 10b). The observed return period is estimated to be 18 years (15 years to 21 years), approxi-
mately a year longer than that of RX1D. Moreover, the estimated values for the different forcings are 17 years
(14 years to 20 years) for ANT, 18 years (15 years to 20 years) for GHG, 20 years (20 years to 20 years) for OA,
19 years (17 years to 23 years) for ALL, and 21 years (19 years to 22 years) for NAT. Clearly, extreme precipita-
tion was more likely to occur in 2005, and anthropogenic (ANT, including GHG) forcings provide the best
explanation for this phenomenon. Additionally, the ALL simulations also capture the general features of
the observations, but the corresponding underestimate of the percent increase in extreme precipitation
clearly leads to a longer attributable return period, according to equation (4). However, the results from
the NAT simulations bear almost no resemblance to the observations, and there is no change for the
OA forcing.

5. Discussion and Conclusions

Previous studies have indicated that extreme precipitation over the midlatitudes of the Northern Hemisphere
is expected to increase due to climate warming [Pall et al., 2007; O’Gorman and Schneider, 2009]. Here we
briefly discuss the relationship between the changes in annual mean surface air temperature (SAT) and
extreme precipitation over China. The SAT over China is reported to have increased significantly in recent
decades (1.2°C). This trend is well reproduced by the GHG (1.2°C), ANT (0.9°C), and ALL (1.0°C) simulations,
but not by the NAT (0.1°C) simulations or the OA (�0.4°C) simulations (figures not shown). Here we

Figure 10. Same as in Figure 9 but for the observed and attributable return periods in 2005 corresponding to the 20 year
events in 1961. Units: years.
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compute the regression coefficient of the 5 year averaged PI and SAT anomalies over China by performing fits
using the least squares method. PI is observed to increase by 2.7%/K (�1.2%/K to 6.7%/K) for RX1D and 1.7%/
K (�2.7%/K to 6.0%/K) for RX5D, much lower than what the CC relationship predicts. Figure 11 shows scatter-
plots of the 5 year averaged PI and SAT anomalies averaged over China during 1960–2005 from the observa-
tions and the MME. The results of themodel simulations indicate that the percent increases in the PI based on
RX1D for the different forcings are estimated to be 5.7%/K (3.4%/K to 8.0%/K) for NAT, 4.6%/K (3.7%/K to
5.6%/K) for GHG, 4.1%/K (3.0%/K to 5.3%/K) for ANT, 2.4%/K (�1.8%/K to 6.6%/K) for OA, and 4.2%/K
(3.3%/K to 5.1%/K) for ALL. Similar results can be found for RX5D, for which the percent increases for the dif-
ferent forcings are 7.3%/K (4.4%/K to 10.1%/K) for NAT, 4.6%/K (3.2%/K to 6.1%/K) for GHG, 3.4%/K (1.9%/K to
5.0%/K) for ANT, 3.2%/K (�4.1%/K to 10.5%/K) for OA, and 3.9%/K (2.8%/K to 4.9%/K) for ALL. Generally, esti-
mates based on the NAT simulations resemble the CC relationship, but they are considerably higher than the
observed percent increases. In contrast, the results of the ALL, GHG, ANT, and OA underestimate the CC rela-
tionship but are quite consistent with observations. The relationships between the PI and SAT based on dif-
ferent simulations are quite similar to the above results if we eliminate the last 5 year mean values, which are
5.8%/K (1.7%/K to 9.9%/K) for RX1D and 4.9%/K (0.3%/K to 9.6%/K) for RX5D in the observations, and these
changes are much closer to the CC relationship (see Figure S6 and Table S1 in the supporting information).
This phenomenon mainly results from the sudden decrease in the PI around the early 2000s, which occurred
while SAT continued to increase. Here we multiply the regression ratio by the SAT, and the result is further
multiplied by the corresponding scaling factor that describes the response to different forcings. We find that
the results based on multiplication are nearly the same as the corresponding values of the attributable PI
variability response to the different forcings (Figure 8).

Another issue that should be pointed out is that the ANT fingerprints do not represent a direct response to
anthropogenic forcing; instead, they are indirectly estimated as the ALL simulations minus the NAT simula-
tions. By analyzing the single-signal and two-signal cases, we assess the noise present in the ALL and NAT
simulations. In addition, the anthropogenic aerosol effect is very difficult to recognize in current models,
because both aerosol-cloud interactions and aerosol-radiation interactions can influence extreme precipita-
tion over China [Myhre et al., 2013]. From the perspective of regression model selection, neither the NAT
forcings nor the OA forcings are primary elements of predictors; thus, these factors result in invalid single-
regression models. However, they are not negligible via the combined external forcing processes.
Therefore, physical mechanisms and dynamic processes related to the NAT and OA forcings are worthy of
more attention in the future.

In this study, we have found that the ANT results generally capture the observed extreme precipitation
changes over China in terms of both their spatial distribution and temporal variations. The results also indi-
cate that the response of the changes in extreme precipitation to the ANT signal is consistent over the past
several decades. Meanwhile, the GHG signal is also detectable in cases where RX1D is examined using single-
signal analyses. In consideration of the attributable changes in the PI, extreme precipitation, and 20 year

Figure 11. Scatterplots of the 5 year averaged PI anomalies and surface air temperature (SAT) during 1961–2005 from
observations and the MME with runs using different forcings for (a) RX1D and (b) RX5D. The solid lines represent the
corresponding regression lines obtained by fitting the total least squares equation.
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return events under nonstationary climate conditions, we also find that the changes driven by anthropogenic
forcing resemble the estimates from observations, as well as the results from the ALL simulations.
Consequently, the ANT forcings are likely to partially drive the intensification of extreme precipitation over
China, in which greenhouse gas emissions account for the generally detected response. Moreover, the effect
of the OA forcings is small, but it cannot be neglected. Despite the good performance of the ANT results, the
effects of the ANT forcings could not be detected with doubled internal variability, suggesting that the attri-
bution technique becomes less robust with strong internal variability. Therefore, in addition to the emerging
effects of the ANT forcings, the internal variability also has an obvious influence on the intensification of
extreme precipitation over China. Furthermore, the ANT results show good agreement with the observations,
considering the PI changes in response to climate warming.
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