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combined with observations of frozen ground, we inves-
tigated the permafrost thaw and associated ground settle-
ment under 2 °C global warming. Results show that the 
climate models produced an ensemble mean permafrost 
area of 14.01 × 106 km2, which compares reasonably with 
the area of 13.89 × 106 km2 (north of 45°N) in the obser-
vations. The models predict that the soil temperature at 
6  m depth will increase by 2.34–2.67 °C on area average 
relative to 1990–2000, and the increase intensifies with 
increasing latitude. The active layer thickness will also 
increase by 0.42–0.45  m, but dissimilar to soil tempera-
ture, the increase weakens with increasing latitude due to 
the distinctly cooler permafrost at higher latitudes. The 
permafrost extent will obviously retreat north and decrease 
by 24–26% and the ground settlement owing to permafrost 
thaw is estimated at 3.8–15  cm on area average. Possible 
uncertainties in this study may be mostly attributed to the 
less accurate ground ice content data and coarse horizontal 
resolution of the models.

Keywords  Permafrost degradation · Ground settlement · 
2 °C global warming · CMIP5

1  Introduction

The global climate has experienced warming during the 
last century, and it is projected to continue to warm in 
the next 100 years (Collins et al. 2013). Climate warming 
is expected to affect geophysical, biological, and socio-
economic systems (Schneider et  al. 2007; Wang and Sun 
2009; Liu et al. 2012; Li et al. 2015; Wang et al. 2015). To 
prevent the dangerous effects of climate warming, policy 
makers and the scientific community consider that soci-
ety should maintain the global mean warming below 2 °C 

Abstract  Global warming of 2 °C above preindustrial 
levels has been considered to be the threshold that should 
not be exceeded by the global mean temperature to avoid 
dangerous interference with the climate system. However, 
this global mean target has different implications for dif-
ferent regions owing to the globally nonuniform climate 
change characteristics. Permafrost is sensitive to climate 
change; moreover, it is widely distributed in high-latitude 
and high-altitude regions where the greatest warming is 
predicted. Permafrost is expected to be severely affected by 
even the 2 °C global warming, which, in turn, affects other 
systems such as water resources, ecosystems, and infra-
structures. Using air and soil temperature data from ten 
coupled model intercomparison project phase five models 
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relative to preindustrial temperatures (UNFCCC 2010, 
2015). However, climate warming has not been globally 
uniform. Higher warming is observed and projected to 
occur in higher northern latitudes and high-altitude areas 
(Guo and Wang 2012; Collins et al. 2013; Hartmann et al. 
2013; Zhou et al. 2014, 2016). Therefore, regional climate 
changes are expected to differ under this target of global 
warming of 2 °C.

Permafrost is defined as the ground where soil tem-
perature remains at or below 0 °C for at least two con-
secutive years. In the Northern Hemisphere, permafrost 
extent is estimated to be approximately 22.79 × 106  km2, 
which is equivalent to approximately 1/4 of the North-
ern Hemisphere land area. It is estimated that permafrost 
soils in the Northern Hemisphere store approximately 
11.37–36.55 × 103 km3 of ground ice (Zhang et al. 1999). 
The ablation of the ground ice will largely affect hydrol-
ogy and water resources (Guo et al. 2012; Lan et al. 2015; 
Liljedahl et al. 2016). In addition, the freezing and thaw-
ing processes of the surface layers of permafrost regulate 
the variations of soil and surface water and heat, which 
further strongly affect soil biogeochemical cycles, surface 
energy budgets, local hydrological processes, and vegeta-
tion (Yang et al. 2010, 2014; Guo et al. 2011a, b; Li and 
Chen 2013; Yi et  al. 2014; Qin et  al. 2014). Besides, as 
a large carbon pool, permafrost soils store approximately 
twice the carbon presented in the current atmosphere 
(Zimov et al. 2006; Schuur et al. 2009). The release of the 
carbon caused by permafrost degradation may intensify 
climate warming (Schuur et  al. 2009, 2015; Koven et  al. 
2011; Burke et al. 2013). From the human perspective, the 
ablation of ground ice in permafrost can result in the set-
tlement of the ground surface, which will affect the stabil-
ity of permafrost-underlain infrastructures (Nelson et  al. 
2002; Guo and Sun 2015).

Despite these effects mentioned above, permafrost 
is widely distributed in high-latitude and high-altitude 
regions where the greatest warming is predicted to occur. 
Furthermore, as defined by the ground temperature, per-
mafrost is potentially sensitive to climate change (Anisi-
mov et al. 2001; Guo and Wang 2013, 2014). Clearly, the 
Earth’s permafrost is likely easy to degrade in response 
to global climate warming. Thus, it is expected that per-
mafrost will be significantly affected even at the rela-
tively moderate target of 2 °C global warming, which, in 
turn, affects other systems such as hydrology and water 
resources, ecosystems, human infrastructures, and climate 
change.

Because of growing concerns, research efforts have con-
centrated on investigating changes in regional-climate-sensi-
tive systems during 2 °C global warming relative to preindus-
trial temperatures (Kaplan and New 2006; Giannakopoulos 
et al. 2009; Meinshausen et al. 2009; Jiang and Fu 2012; May 

2012; Vautard et al. 2014; Sui et al. 2015). Kaplan and New 
(2006) investigated the effect of 2 °C global warming on the 
Arctic climate and vegetation cover. Their results showed that 
the Arctic forest extent increases by 55% with a correspond-
ing decrease of 42% in the tundra area, which is significant. 
Climate change and associated impact in the Mediterranean 
basin under the 2 °C global warming scenario were investi-
gated using the Hadley Centre Coupled Model version 3 
(HadCM3) (Giannakopoulos et  al. 2009). More recently, 
Jiang and Fu (2012) analyzed the climate change over China 
under the 2 °C global warming scenario using an ensemble 
of 16 GCM simulations and reported that the area-averaged 
annual temperature and precipitation in China increases by 
2.7–2.9 °C and 3.4–4.4%, respectively, relative to the period 
1890–1900. The European climate under the 2 °C global 
warming scenario was also analyzed using an ensemble of 15 
regional climate simulations (Vautard et  al. 2014). Most of 
Europe will experience higher warming than the global aver-
age, and robust changes in the mean and extreme tempera-
tures, precipitation, and wind and surface energy budgets are 
expected. Nevertheless, permafrost change and the associated 
ground settlement amount under the 2 °C global warming 
have not been fully assessed.

Although some studies have referred to the simulation of 
permafrost change in response to climate warming (Anisimov 
and Nelson 1996, 1997; Stendel and Christensen 2002; Law-
rence et al. 2008, 2012; Zhang et al. 2008; Koven et al. 2013; 
Slater and Lawrence 2013; Guo and Wang 2016a, b; Liu and 
Jiang 2016), they did not focus on spatial and quantitative 
changes in permafrost under the 2 °C global warming, which 
are important for looking at the global warming threshold 
of 2 °C from permafrost change perspective. Some studies 
have also referred to thaw settlement of permafrost (Nel-
son et  al. 2001, 2002; Anisimov and Reneva 2006; Zhang 
and Wu 2012), but they mostly presented settlement hazard 
zonation with relative risk grade (stable, low, moderate, and 
high risk) rather than amount of the ground settlement. Spe-
cific settlement amount of the ground surface is important 
for flexible evaluation of permafrost-underlain infrastructure 
stabilization.

The focus of the present study is on quantitatively assess-
ing the permafrost thaw and associated settlement amount of 
the ground surface resulting from the 2 °C global warming 
using air and soil temperature data from 10 CMIP5 models 
and observations of frozen ground. Before assessing, the time 
at which the global mean temperature will increase by 2 °C 
relative to the preindustrial level from the used 10 CMIP5 
models is estimated. In addition, a validation of the simula-
tions of soil temperature, active layer thickness (ALT), and 
permafrost area from climate models is performed based on 
in  situ observations and the Circum-Arctic permafrost map 
(Brown et al. 1997).
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2 � Data and methods

2.1 � Data

Monthly air and soil temperature data during the historical 
and future periods were obtained from CMIP5 simulations 
(http://cmip-pcmdi.llnl.gov/cmip5/). Two representative 
concentration pathways (RCPs, usually refer to the por-
tion of the concentration pathway extending up to 2100) 
were used: RCP4.5 [an intermediate stabilization pathway 
in which radiative forcing is stabilized at approximately 
4.5 W m− 2 (approximately 650 ppm CO2 equivalent) after 
2100, Moss et  al. 2010] and RCP8.5 [an high pathway 
in which radiative forcing is stabilized at approximately 
8.5 W m− 2 (approximately 1370 ppm CO2 equivalent) after 
2100, Moss et  al. 2010]. Ten climate models (CCSM4, 
CESM1-CAM5, GFDL-ESM2g, MIROC5, MIROC-ESM, 

MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3, NorESM1-
M, and NorESM1-ME) were selected obeying the follow-
ing restrictions. (1) Soil temperature are not available for 
some climate models. (2) Climate models with soil depths 
shallower than 6 m were not selected in terms of the fact 
that inclusion of deeper soil tends to improve simulation 
of frozen ground (Lawrence et  al. 2008). These models 
involve soil freezing and thawing processes and multiple 
snow layers in the land surface components (e.g., Takata 
et  al. 2003; Lawrence et  al. 2011). Most of these mod-
els also involve soil organic matter (e.g., Lawrence et  al. 
2011). The basic features of the ten models are presented 
in Table 1, and additional details regarding the simulations 
can be found in Taylor et al. (2012). The CMIP5 simulation 
data are derived from the Earth System Grid Federation 
(ESGF) gateway (http://pcmdi9.llnl.gov/esgf-web-fe/). The 
data have been widely used in simulating and predicting 

Table 1   Details of the models

Soil temperatures are mean values averaged in the simulated present-day permafrost area for 1981–2000. The soil depth refers to the maximum 
depth with soil temperature data rather than the depth prescribed in the models.

Model name Resolution
(°lon × °lat)

Soil tempera-
ture at 1 m 
depth (°C)

Soil tempera-
ture at 6 m 
depth (°C)

Land model No. 
of soil 
layers

Soil depth 
(m)

Snow layer Organic 
matter

Model refer-
ence

CCSM4 0.9 × 1.125 −4.06 −4.16 CLM4 15 35.18 Multilayer Yes Lawrence et al. 
(2012), Gent 
et al. (2011)

CESM1-
CAM5

0.9 × 1.125 −5.97 −5.99 CLM4 15 35.18 Multilayer Yes Lawrence 
et al. (2012), 
James et al. 
(2013)

GFDL-
ESM2g

2.0 × 2.5 −10.67 −10.76 LM3 23 8.75 Multilayer No Dunne et al. 
(2012)

MIROC5 1.4 × 1.4 −9.58 −9.69 MATSIRO 6 9.0 Multilayer No Takata et al. 
(2003), 
Watanabe 
et al. (2010)

MIROC-
ESM

2.81 × 2.81 −5.93 −6.05 MATSIRO 6 9.0 Multilayer No Takata et al. 
(2003), 
Watanabe 
et al. (2011)

MPI-ESM-
LR

1.87 × 1.87 −9.05 −9.04 JSBACH 5 6.98 Multilayer Yes Giorgetta et al. 
(2013)

MPI-ESM-
MR

1.87 × 1.87 −8.37 −8.33 JSBACH 5 6.98 Multilayer Yes Giorgetta et al. 
(2013)

MRI-
CGCM3

1.12 × 1.12 −4.57 −4.62 HAL 14 8.5 Multilayer No Yukimoto et al. 
(2012)

NorESM1-M 1.87 × 2.5 −6.08 −6.14 CLM4 15 35.18 Multilayer Yes Lawrence 
et al. (2012), 
Bentsen et al. 
(2013)

NorESM1-
ME

1.87 × 2.5 −6.46 −6.45 CLM4 15 35.18 Multilayer Yes Lawrence 
et al. (2012), 
Tjiputra et al. 
(2013)

http://cmip-pcmdi.llnl.gov/cmip5/
http://pcmdi9.llnl.gov/esgf-web-fe/
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permafrost dynamics and climate change (Koven et  al. 
2013; Slater and Lawrence 2013; Hua et al. 2014; Guo and 
Sun 2015; Guo and Wang 2016b).

In situ site observations of the soil temperature at depths 
of 1 and 6 m and the ALT were also used to validate the 
results of the simulations. The soil temperature observa-
tions were obtained from (1) Russian historical soil tem-
perature (RHST) measurements (Zhang et al. 2001) at 1 m 
depth and (2) the International Polar Year thermal state 
of permafrost (IPY-TSP) at 6 m depth (Romanovsky et al. 
2010; Romanovsky 2010) (Table 2). The RHST data cover 
the total period from 1882 to 1990 but are not continuous. 
Many stations have data beginning in the 1930s and 1950s. 
Moreover, not all stations have data through 1990. The data 
were obtained at depths ranging from 0.02 to 3.2 m. In this 
study, the 1980–1990 average of the RHST data were used 
to validate the present-day simulated soil temperature at 
1  m depth during the corresponding period. It should be 
mentioned that these HRST data may be systematically 
biased because the measurements were generally made on 
bare soils in which surface organic layers had been removed 
for agricultural purposes (Gilichinsky et al. 1998). In spite 
of this issue, the data still were used due to the scarcity of 
soil temperature observations in permafrost region. The 
IPY-TSP data cover the period of 2007–2008 with a total 
measured depth of 0–100 m, but this is not the case for all 
stations. These data were used to validate the simulated 
soil temperature at 6  m depth during the corresponding 
period. Because soil temperature at 6 m depth have weak 
inter-annual variations (Wu and Zhang 2008), the valida-
tion based on the period of 2007–2008 is valid although 
climate models are not supposed to accurately replicate the 
inter-annual climate variations. For both observations men-
tioned above, the soil temperatures at the depths of interest 
(1 and 6 m) were not directly measured at all sites included 
in the corresponding data bases; they were estimated using 
simple linear interpolation between known values. These 
observations are reliable and have been used to validate the 
results from climate models (Lawrence et al. 2012; Koven 
et al. 2013).

ALT observations were also obtained from (1) the Cir-
cumpolar active layer monitoring (CALM) network (Brown 
et  al. 2000) and (2) the historical active layer thickness 

calculated from soil temperature observations at 31 Rus-
sian sites (AL_RHST) (Zhang et  al. 2006) (Table 2). The 
CALM data cover the period of 1990–2015, but not 
all stations have data for the entire period. The data for 
1990–2000 were used in this study for validation of the pre-
sent-day simulation results. The AL_RHST data cover the 
period of 1930–1990 and the data for 1980–1990 were used 
for validating the present-day simulation results. These two 
datasets were first averaged over their recorded period at 
each station and then respectively compared to the simu-
lated ALT for the corresponding period. These ALT obser-
vations also are reliable and have been used to assess the 
climate model results (Lawrence et  al. 2012; Koven et  al. 
2013).

Permafrost area and ground ice in permafrost were 
obtained from the Circum-Arctic map of permafrost and 
ground ice conditions (Brown et al. 1997), which are per-
haps the best available data on the distribution of perma-
frost and ground ice. The data were used to validate the 
present-day simulations of the permafrost area and estimate 
the settlement of the ground surface. The data are archived 
at a resolution of 0.5° longitude × 0.5° latitude at http://
nsidc.org/data/docs/fgdc/ggd318_map_circumarctic/index.
html. Permafrost is classified into continuous, discontinu-
ous, isolated, and sporadic; nevertheless, it is believed that 
GCMs generally can only identify continuous and discon-
tinuous permafrost due to their coarse resolutions (Burn 
and Nelson 2006). Thus, only these two types were used in 
the validation of the model results of this study. It should 
be mentioned that this approach is resolution-dependent, 
which may be not true for higher-resolution model. The 
ground ice content of the permafrost refers to relative abun-
dance of ground ice, which is given in 3% volumes: 0–10, 
10–20, and >20%. Consequently, only the corresponding 
range in the settlement of the ground surface can be esti-
mated, i.e., minimum and maximum settlement, shown 
in Sect.   3.3. Notably, for the areas with ground ice con-
tent >20%, the maximum ground ice content is unclear. 
In order to obtain maximum value of settlement, an upper 
bound value of ground ice content of 100% is used in this 
study. By doing this, the estimated maximum settlement 
is amplified in these areas to some extent, although these 
areas are small, as shown in Sect.  3.3.

Table 2   Summary of the 
information of the observed 
data used to validate climate 
model results

Data Name Depth (m) Period of used data Reference

Soil temperature RHST 1.0 1980–1990 Zhang et al. (2001)
IPY-TSP 6.0 2007–2008 Romanovsky et al. 

(2010), Romanovsky 
(2010)

Active layer thickness CALM 1990–2000 Brown et al. (2000)
AL_RHST 1980–1990 Zhang et al. (2006)

http://nsidc.org/data/docs/fgdc/ggd318_map_circumarctic/index.html
http://nsidc.org/data/docs/fgdc/ggd318_map_circumarctic/index.html
http://nsidc.org/data/docs/fgdc/ggd318_map_circumarctic/index.html
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2.2 � Methods

The settlement index (I
s
), developed by Nelson et  al. 

(2002), was used to estimate the settlement amount of the 
ground surface owing to permafrost thaw,

where ΔZ
al

 is the relative change in the ALT and V
ice

 is the 
ground ice content of volumetric proportion. This index 
considers ALT and ground ice as the most important fac-
tors of the permafrost. The assumption in Eq.  (1) is that 
liquid water generated by melting ground ice can timely 
drain away from the study site, and the associated settle-
ment of the ground surface is proportional to the thickness 
of the melted ground ice. In Eq. (1), I

s
 is a dimensionless 

index. Thus it cannot express a certain settlement amount 
that is flexible for application. Guo and Sun (2015) used the 
actual increases (unit: m) to replace the originally relative 
change in the ALT. Consequently, the index I

s
 represents 

the certain settlement amount of the ground surface, with a 
unit of meters. In this study, the above modification is also 
performed. The ground ice content, required by Eq.  (1), 
was directly derived from the Circum-Arctic map of per-
mafrost and ground ice conditions (Brown et al. 1997), and 
the ALT was calculated using the soil temperature from the 
climate models. The method of calculation of the ALT can 
be seen in the next paragraph.

Permafrost was identified as the ground where at least 
one soil layer in the upper 3.5 m had monthly soil temper-
ature below 0 °C for at least 24 consecutive months. The 
permafrost is near-surface permafrost because the depth of 
3.5 m was used as in Lawrence et al. (2008). The ALT was 
computed as the maximum depth of thaw for permafrost 
ground over the course of the year (Lawrence et al. 2008). 
As shown in Table 1, the climate models show several dif-
ferent numbers of soil layer and spatial resolutions. In this 
study, the temperature of the soil layers of each model were 
first linearly interpolated to evenly spaced layers with thick-
ness of 0.1 m before they were used to calculate the perma-
frost and ALT. The interpolation is allowed due to the fact 
that soil temperature generally show a linear relationship 
with depth (Koven et al. 2013). For the spatial resolution, 
together with all simulated data from the CMIP5 models, 
the permafrost and ground ice data were interpolated with 
the resolution of 0.9° longitude × 1.125° latitude of CCSM4 
for homogenous calculation and comparison.

Not all the CMIP5 models were run from the start of 
the preindustrial period (1750 or 1850) (Schneider et  al. 
2007). Some models did not produce data for the prein-
dustrial period. To correct this, Schneider et  al. (2007) 
proposed that the 2 °C warming above preindustrial levels 
corresponded to 1.4 °C warming above the 1990–2000 lev-
els. Therefore, this study used the 1.4 °C warming relative 

(1)I
s
= ΔZ

al
V
ice

to the period of 1990–2000 to estimate the time of the 2 °C 
global warming. The same approach was also used in Lang 
and Sui (2013).

In addition, in this study, the 21 years mean perma-
frost conditions centered on the 2 °C global warming times 
(identified in the following Sect. 3.1) were first calculated, 
and then their differences from the 1990–2000 mean level 
were taken as changes in permafrost and the associated 
ground settlement under the 2 °C global warming.

3 � Results

3.1 � Time of the 2 °C global warming

Time series of the global mean air temperature anomalies 
of each model are shown in Fig.  1, which are smoothed 
with the 21-year moving average as in Kaplan and New 
(2006). It should be mentioned that, in the RCP2.6 sce-
nario, only CESM-CAM5 and MIROC-ESM temperature 
reach 1.4 °C in 2033 and 2035, respectively. The ensem-
ble mean air temperature of all models is always lower 
than 1.4 °C until the end of the simulation. Therefore, the 
RCP2.6 scenario is not considered in this study. The air 
temperature of all models except GFDL-ESM2G reached 
1.4 °C in 1950–2090 under the RCP4.5 scenario. The cor-
responding times are between 2030 and 2054, if GFDL-
ESM2G is not considered. The ensemble mean temperature 
reached 1.4 °C in 2045, which is taken as the time of the 
2 °C global warming. Under the RCP8.5 scenario, the air 
temperature of all models reached 1.4 °C in 1950–2090, 
with corresponding time of 2027–2051. The ensemble 
mean temperature reached 1.4 °C in 2037, which is taken as 
the time of the 2 °C global warming in this scenario.

In order to validate the times of the 2 °C global warm-
ing identified above, we compare them with the previous 
results. Jiang and Fu (2012) reported 2046 as the time of 
the 2 °C global warming under the A1B scenario. For com-
parison, we calculated 2045 under the RCP4.5 scenario, 
which is similar to the A1B scenario. When the median is 
calculated to compare the time of the 2 °C global warming 
in Vautard et al. (2014), we calculated 2049 (RCP4.5) and 
2039 (RCP8.5), which are comparable to 2050 (RCP4.5) 
and 2042 (RCP8.5). Thus, the estimated times in this study 
is appropriate.

The mean air temperature change in the permafrost 
region is compared to the global mean temperature. As 
shown in Fig.  2, the air temperature in the permafrost 
region increases by 2.3–3.8 °C (RCP4.5) and 2.4–3.5 °C 
(RCP8.5) relative to 1990–2000, when the global mean 
temperature increases by 1.4 °C. The best estimate for the 
global mean temperature increase from the preindustrial 
period to 1990–2000 is 0.6 °C (Schneider et  al. 2007). 



2574	 D. Guo, H. Wang 

1 3

Moreover, the higher northern latitudes are observed to 
experience larger warming than the global mean (Hart-
mann et al. 2013). Therefore, using the preindustrial period 
as reference, the air temperature in the permafrost region 
increases by at least 2.9–4.4 °C (RCP4.5) and 3.0–4.1 °C 
(RCP8.5) when the global mean temperature reaches 2 °C. 
Such a relatively high warming is expected to significantly 
affect the permafrost.

3.2 � Validation of the model results

The results from the CMIP5 models are validated based 
on in situ site observations. As shown in Fig. 3a, the spa-
tial change pattern of the simulated soil temperature at 1 m 
depth agrees with the site observations. The pattern and 
site observations suggest a consistent poleward change of 
soil temperature from warm to cold. This also holds for the 
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frost region when the 21-year mean global air temperature anomaly 
reaches 1.4 °C in the ten climate models
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soil temperature at 6 m depth (Fig. 3b). Six statistical indi-
ces (mean bias, mean absolute, root mean square error, spa-
tial correlation coefficient, percent bias, and Nash-Sutcliffe 
efficiency) regarding spatial similarities between the grid-
ded simulations and corresponding site observations are 
shown in Table 3. The mean absolute bias and spatial cor-
relation coefficient is 1.90 °C and 0.79, respectively, for soil 

temperature at depth of 1 m, and 1.40 °C and 0.86, respec-
tively, for soil temperature at depth of 6 m (Table 3). For 
the ALT, the simulated spatial pattern is also in good agree-
ment with the site observations, presenting a poleward 
change for the active layer from thick to thin (Fig. 3c, d). 
The mean absolute bias and spatial correlation coefficient is 
0.49 m and 0.36, respectively, for ALT compared to CALM 

Fig. 3   Comparison of the present-day simulated ensemble-mean soil 
temperature (°C, shaded color) at depth of 1  m (a), for 1980–1990 
and 6  m (b), for 2007–2008, and active layer thickness (m, shaded 
color) for 1990–2000 (c) and for 1980–1990 (d) with observations 

(circles for soil temperature and rectangles for active layer thick-
nesses). Panels c and d are based on CALM and AL_RHST obser-
vations, respectively. The three countries (Russia, Canada, and the 
USA), containing permafrost, are outlined by the gray dashed lines
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observations, and 0.49  m and 0.50, respectively, for ALT 
compared to AL_RHST observations (Table  3). Notably, 
when calculating the mean biases and spatial correlation 
coefficients, if a model grid cell contains more than one 
borehole site, the site observations are first averaged, as the 
“observed value” of this grid cell, and then the “observed 
value” is compared to the simulated value of this grid cell. 
Despite this, all original borehole sites, however, are shown 
in Fig. 3a–d.

The comparisons suffer from scale mismatch because 
they are based on grid-mean simulations and individual site 
observations. In a grid cell area, the soil temperature and 
ALT may vary substantially (Lawrence et  al. 2012). Fur-
thermore, the borehole sites are typically located in warm 
plains and basins (Wu et  al. 2010), which tends to favor 
high observed soil temperatures compared with the grid-
mean simulations. In this study, the observed high soil tem-
peratures are shown in Fig. 3a, b. Considering these issues 
in the comparison, the simulation results are reasonable.

The climate models yields a present-day 
(1980–2000 average) ensemble mean permafrost area 
of 14.01 × 106  km2, which is quite close to the area of 
13.89 × 106 km2 (north of 45°N) in the observations, with 
a bias of 0.12 × 106 km2 (Fig. 4). This area is taken as the 
“simulated present-day permafrost area” in this study. In 
this comparison, the observations were developed using the 
data derived from the period of 1960–1993 (Brown et  al. 
1997), whereas the simulated present-day permafrost area 
is averaged over the period of 1980–2000. This mismatch 
in the periods may contribute to the deviation. Overall, the 
models yielded a reasonable present-day permafrost extent.

Notably, the aforementioned biases in the simulated 
soil temperature, ALT, and permafrost extent contain the 
systematic biases (a type of bias that deviates by a fixed 
amount from the true value) of the models. These system-
atic biases can be removed when calculating permafrost 
change that is the differences of permafrost during the two 
periods. In other words, the biases in the validation does 
not mean that the same biases will exist in the following 
permafrost change analysis. Actually, biases can be smaller 

in the permafrost change analysis due to the removal of the 
systematic biases, although it is difficult to estimate to what 
extent the biases become smaller.

3.3 � Permafrost degradation and the ground settlement

In response to the 2 °C global mean warming relative to 
the preindustrial period, the soil temperature at 1 m depth 
increased relative to 1990–2000 with area means of 2.75 
and 2.47 °C over the simulated present-day permafrost 
region under the RCP4.5 and RCP8.5 scenarios, respec-
tively (Fig.  5a, b). From the spatial pattern, we can see 
that soil temperature increase gradually intensifies along 
with increasing latitude, and the largest increase is in the 
Canadian Archipelago. The pattern is similar to that from 

Table 3   Statistics of spatial 
similarities between the gridded 
simulations and corresponding 
site observations for soil 
temperature at 1 and 6 m depths 
and active layer thickness

All correlation coefficients exceed the 95% significance level

Index Soil temperature at 
1 m depth

Soil temperature at 
6 m depth

Active layer 
thickness 
(CALM)

Active layer 
thickness 
(AL_RHST)

Mean bias (°C) −1.53 −0.34 0.39 −0.42
Mean absolute bias (°C) 1.90 1.40 0.49 0.49
Root mean square error (°C) 2.20 1.80 0.55 0.63
Spatial correlation coefficient 0.79 0.86 0.36 0.50
Percent bias (%) 73 12 62 24
Nash-Sutcliffe efficiency 0.30 0.72 −2.27 −0.53

Fig. 4   Comparison of the present-day simulated ensemble-mean per-
mafrost area (shaded color) for 1980–2000 with observations (areas 
outlined in blue). The three countries (Russia, Canada, and the USA), 
containing permafrost, are outlined by the gray dashed lines
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ERA-Interim soil temperature change at 1  m depth from 
1981 to 2005 (not shown).

The temperature in the deep soil layer can be taken as 
an indicator of the response of permafrost to long-term 
climate change (Xu et  al. 2010). Therefore, the soil tem-
perature change at depth of 6 m, the depth being integral 
and closest to the largest depth of 6.9 m of the simulated 
ensemble mean soil temperature, is also analyzed (Fig. 5c, 

d). The soil temperature increase at depth of 6 m is slightly 
lower than that at depth of 1 m, with area means of 2.67 and 
2.34 °C over the simulated present-day permafrost region 
under the RCP4.5 and RCP8.5 scenarios, respectively. 
Similar to the situation at depth of 1 m, the soil tempera-
ture increase at 6 m depth also intensifies with increasing 
latitude, and the largest increases appear in the Canadian 
Archipelago.

Fig. 5   Change in soil temperature (°C) at depths of 1 and 6  m 
between the 2 °C warming and 1990–2000 period under the RCP4.5 
and RCP8.5 scenarios. Mean change denotes the area-averaged 

change. Three countries (Russia, Canada, and the USA), containing 
permafrost, are outlined by the gray dashed lines
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Permafrost active layers thicken in response to the 
2 °C global warming, ranging from 0 to 5.7  m (area 
mean: 0.45 m) and 0 to 5.2 m (area mean: 0.42 m) under 
the RCP4.5 and RCP8.5 scenarios, respectively (Fig.  6). 
Despite the spatial pattern of soil temperature change in 
which the increase intensifies with increasing latitude, the 
increase in the ALT weakens with increasing latitude. The 
reason can be explained as follows. As shown in Fig.  3a, 
permafrost thermal status distinctly cools with increas-
ing latitude. Although the situation that soil temperature 
increase intensifies with increasing latitude plays a positive 
role in offsetting the cooling permafrost thermal status with 
increasing latitude, it is not sufficient to make the distinctly 
cooling permafrost thermal status with increasing latitude 
exceed the freezing point. In addition, the increase in ALT 
only depend on whether permafrost thermal status is above 
the freezing point. These two aspects jointly make that the 
increase in the ALT weakens with increasing latitude.

Permafrost area decreases by 26 and 24% under the 
RCP4.5 and RCP8.5 scenarios, respectively (Fig.  6). The 
losses primarily occur at the southern edge of permafrost 
region. Recall that the climate models can only identify 
continuous and discontinuous permafrost. In other words, 
these losses refer only to these two types of permafrost. 
Other types of permafrost, such as the isolated and sporadic 
permafrost, may suffer most losses, due to their relative 
warm properties at the southern edge of the entire perma-
frost region in the Northern Hemisphere.

The settlement of the ground surface owing to perma-
frost thaw is analyzed (Fig. 7). The minimum settlement is 
small in most of the permafrost region, except for a small 
number of grids at the southern edge of the permafrost 
region where it is relatively large. Over the entire perma-
frost area shown in Fig. 7, the minimum settlement ranges 
from 0 to 98 cm with area mean of 4 cm for RCP4.5 and 
from 0 to 104  cm with area mean of 3.8  cm for RCP8.5. 
The range between minimum and maximum settlement in 
most of the permafrost region is quite distinct, except in 
the Canadian Archipelago and northern Greenland where 
the maximum settlement is smaller than 1 cm. The maxi-
mum settlement ranges from 0 to 490 cm with area mean of 
15 cm for RCP4.5 and from 0 to 520 cm with area mean of 
14 cm for RCP8.5. From the spatial pattern, the maximum 
settlement decreases along with increasing latitude; how-
ever, this is not true for small areas (shown as rectangles), 
where relatively large values are seen at relatively high lat-
itude. This is because the ground ice content is relatively 
large (>20%) in these small areas. In addition, as stated 
in Sect.   2.1, the ground ice content in these small areas 
is assigned the unrealistic maximum value of 100% when 
calculating the maximum settlement. Thus, the maximum 
settlement in these small areas is amplified to some extent. 
In other words, the realistic maximum settlement in these 
small areas is smaller than that shown in Fig. 7c, d.

Clearly, in response to the 2 °C global warming, the 
permafrost degradation under the RCP4.5 scenario is 

Fig. 6   Change in the active layer thickness (ALT) (m, shaded color) 
and permafrost area (gray area) between the 2 °C warming and 1990–
2000 period under the RCP4.5 and RCP8.5 scenarios. Mean change 

denotes the area-averaged change. Three countries (Russia, Canada, 
and the USA), containing permafrost, are outlined by the gray dashed 
lines



2579Permafrost degradation and associated ground settlement estimation under 2 °C global warming﻿	

1 3

close to that under the RCP8.5 scenario. This is because 
these two scenarios behave similarly in the process of the 
2 °C warming (Fig. 1). The small difference in permafrost 
degradation between the two scenarios may be due to 
slightly different time to reach the 2 °C warming (2037 for 
the RCP8.5 and 2045 for the RCP4.5, with a difference of 

8 years). Generally, permafrost responds relatively slowly 
to changes in climate. More time (RCP4.5) could per-
mit permafrost to respond more fully to the 2 °C global 
warming than less time (RCP8.5), which may cause the 
small difference.

Fig. 7   Minimum and maximum settlement (cm) of the ground sur-
face owing to permafrost thaw that is caused by the air temperature 
rise from 1990 to 2000 to the 2 °C warming period in the RCP4.5 and 
RCP8.5 scenarios. Gray areas represent the areas with the ground 

settlement below 1.0  cm. Mean change denotes the area-averaged 
change. Three countries (Russia, Canada, and the USA), containing 
permafrost, are outlined by the gray dashed lines
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4 � Discussions

Assessing and quantifying permafrost thaw and associated 
settlement of the ground surface are important but very dif-
ficult due to generally poor ability of models to represent 
frozen ground-relevant processes such as snow, soil organic 
matter, and soil depth (Nicolsky et  al. 2007; Koven et  al. 
2013). Nicolsky et  al. (2007) indicated that the inclusion 
of soil organic matter and deeper soil layers significantly 
improved soil temperature simulation. Koven et al. (2013) 
demonstrated that snow cover plays a crucial role in per-
mafrost simulation due to its insulation effect. This study 
chose the CMIP5 models with soil depth above 6 m. More-
over, the models include explicit frozen ground processes 
and multiple snow layers; most of the models also consider 
soil organic matter. These treatments are conducive to this 
simulation research.

Existing studies indicated that multi-model ensembles 
generally produces superior simulated results compared to 
individual models (e.g., Sillmann et al. 2013). The method 
has been widely used in climate simulation researches 
(Collins et  al. 2013; Jiang et  al. 2016). Accordingly, in 
this study, the multi-model ensemble method was used to 
expect reasonable results of estimation. Based on in  situ 
site observations and the Circum-Arctic permafrost map, 
the simulated ensemble mean soil temperature, ALT, and 
permafrost area are validated. The statistical indices show 
that the simulated results are reasonable.

Differences in permafrost during the two periods (the 
2 °C global warming and 1990–2000 period) are calculated 
to analyze the permafrost thaw and associated settlement of 
the ground surface in this study. When calculating the dif-
ferences, systematical bias caused by some inherent factors 
such as computation inaccuracy and inappropriate resolu-
tion in the model can be removed, which makes the anal-
ysis results approach the true value. This means that the 
actual bias in the analysis results is smaller than that shown 
in the validation.

A source of possible uncertainties in this study is less 
accurate ground ice data. The ground ice data from the map 
of the Circum-Arctic permafrost and ground ice conditions 
are perhaps the best available data of ground ice distribu-
tion at the present. The data have been used to examine 
the risk zonation of thaw settlement hazard of permafrost 
(Nelson et al. 2002). But the data only provide a range of 
ground ice content for a model grid area, which results 
in estimating only the corresponding range of permafrost 
thaw-induced settlement of the ground surface. More obser-
vational studies of ground ice are expected in the future.

Although this study performs a choice of the CMIP5 
models in terms of key processes (e.g., deeper soil and 
multiple snow layers) important for permafrost simula-
tion, a few models still show weak ability to represent 

permafrost (Koven et al. 2013). This may contribute to part 
of possible uncertainties in the ensemble mean results in 
this study. More strict restrictions can be used for contin-
ued study; for example, to select the climate models with 
Community Land Model 4 (CLM4) as land surface model, 
which involves sophisticated permafrost-relevant processes 
(Oleson et al. 2010).

In addition, Burn and Nelson (2006) and Lawrence et al. 
(2008) indicated that inclusion of excess ground ice could 
delay the rate of permafrost thaw. But the models have not 
included the excess ground ice in their physical formula-
tion. This may cause some of possible uncertainties in this 
simulation.

Besides, the relative coarser resolution (0.9° lati-
tude × 1.125° longitude to 2.81° latitude × 2.81° longitude) 
of the models may be another source of possible uncertain-
ties. The coarser resolution provides less regional informa-
tion on climate change and makes the model difficult to 
capture regional details of permafrost change in response 
to the 2 °C global warming. A dynamical downscaling 
approach based on regional climate models can be used 
in the future to yield high-resolution permafrost data and 
possibly improve the estimations of permafrost degradation 
(Guo et al. 2012; Gao et al. 2013; Guo and Wang 2016a). 
Other factors, such as less accurate surface and soil texture 
data (Lawrence et al. 2008), may also contribute to at least 
part of possible uncertainties.

5 � Summary

Permafrost thaw and associated ground settlement in 
response to the 2 °C global warming relative to the prein-
dustrial climate were identified using soil temperature data 
from ten CMIP5 models and frozen ground observations. 
The area-averaged temperature over permafrost areas will 
increase by at least 2.9–4.4 °C when the globe will warm 
by 2 °C relative to preindustrial levels. The ensemble mean 
area of simulated present-day permafrost in the CMIP5 
models agrees well with observational estimates. In  situ 
site observations were also used to validate the simulated 
present-day soil temperature at depths of 1 and 6 m and the 
ALT. The simulation results were found reasonable.

The changes in the permafrost for the 2 °C global 
warming relative to the reference period of 1990–2000 
were assessed. The soil temperature at depth of 6  m 
increases by 2.67 °C (RCP4.5) and 2.34 °C (RCP8.5); 
both are area means over the simulated present-day per-
mafrost. The increase intensifies with increasing lati-
tude. The ALT increases by 0.45 and 0.42 m on average 
under the RCP4.5 and RCP8.5 scenarios, respectively. 
The increase weakens with increasing latitude, a situa-
tion that is opposite to soil temperature. The permafrost 
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area displays an obvious northward retreat expressed 
by the relative decrease of 26 and 24% for RCP4.5 and 
RCP8.5, respectively. The ground settlement ranges from 
4 to 15  cm (RCP4.5) and 3.8 to 14  cm (RCP8.5) with 
respect to area mean values. The settlement decreases 
with increasing latitude except for several small areas.

Despite the moderate target of 2 °C global warm-
ing relative to the preindustrial level, the results suggest 
significant permafrost thaw and associated ground set-
tlement owing to the higher climate warming in the per-
mafrost region than the global mean level. These results 
help to look at the 2 °C global warming target from the 
permafrost change perspective. Possible uncertainties 
in this study may be mostly related to the less accurate 
ground ice content data, which only provide a range of 
ground ice content. Another source of possible uncertain-
ties may be due to absence of excess ground ice in the 
models, affecting the accuracy of the estimated results. 
Besides, the relatively coarser horizontal resolution and 
less accurate surface and soil texture data of the mod-
els also may contribute to part of possible uncertainties. 
More observation-based studies of ground ice in perma-
frost, inclusion of excess ground ice in the models and 
higher-resolution climate simulations are required in the 
future to minimize the possible uncertainties.

Historically, permafrost-relevant studies has moved from 
permafrost properties (e.g., Brown et al. 1997; Zhang et al. 
1999; Romanovsky et  al. 2010), to permafrost changes 
(e.g., Brown et al. 2000; Wu and Zhang 2008; Koven et al. 
2013; Slater and Lawrence 2013; Guo and Wang 2016b), 
and then to the impacts of permafrost change on hydrol-
ogy (e.g., Guo et al. 2012; Cuo et al. 2015; Liljedahl et al. 
2016), ecosystems (e.g., Yang et al. 2010; Yi et al. 2014), 
and climate change (Schuur et al. 2009, 2015; Koven et al. 
2011; Burke et  al. 2013). This present study focuses on 
permafrost thaw-induced settlement of the ground surface. 
Furthermore, the growingly concerned scenario of the 2 °C 
global warming was used. Continued work will concen-
trate on permafrost thaw-induced ground settlement and 
the associated thermal hazard onset timing under multiple 
RCP scenarios, which may be based on the high-resolution 
output of the dynamical downscaling approach of regional 
climate models.
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