[1] Chen, S.Q., J.H. Chen, F.Y. Lv, X.K. Liu, T. Wang, J.B. Liu, J.Z. Hou, F.H. Chen, 2022: Holocene moisture variations in arid central Asia: Reassessment and reconciliation. Quaternary Science Reviews, 297, 107821.
[2] Wang, T.*, H.N. Xu, D.B. Jiang, J.Q. Yao, 2022: Mechanisms of reduced mid-Holocene precipitation in arid central Asia as simulated by PMIP3/4 models. Journal of Geophysical Research: Atmospheres, 127, e2021JD036153, https://doi.org/10.1029/2021JD036153.
[3] Miao, J.P., T. Wang*, D.B. Jiang, 2022: Ozone-aerosol and land use reversed temperature increase over some northern mid-latitude regions between the 20th century and the Little Ice Age based on the CESM-LME. The Holocene, 32, 1251-1259, https://doi.org/10.1177/09596836211041734.
[4] Chen, D., Y. Gao, Y. Zhang, T. Wang, 2022: Effects of spring Arctic sea ice on summer drought in the middle and high latitudes of Asia. Atmospheric and Oceanic Science Letters, 15, 100138, https://doi.org/10.1016/j.aosl.2021.100138.
[5] Gao, Y., D. Chen, H.J. Wang, J.H. Ma, T. Wang, 2022: Effect of interdecadal variation in southern Indian Ocean SST on the relationship between ENSO and summer precipitation in the Asian-Pacific monsoon region. Journal of Geophysical Research: Atmospheres, 127, e2021JD036151, https://doi.org/10.1029/2021JD036151.
[6] Xie, T.T., W. Huang, S. Feng, T. Wang, Y. Liu, J.H. Chen, F.H. Chen, 2022: Mechanism of winter precipitation variations in the southern arid Central Asia. International Journal of Climatoloty, 42, 4477-4490, https://doi.org/10.1002/joc.7480.
[7] Zhang, Y., M.Q. Zhang, J.H. Ma, D. Chen, T. Wang, 2022: Possible contribution of Arctic sea ice decline to intense warming over Siberia in June. Atmospheric and Oceanic Science Letters, 15, 100132, https://doi.org/10.1016/j.aosl.2021.100132.
[8] Fu, Y.H., Z.D. Lin, T. Wang, 2021: Preconditions for CMIP6 models to reproduce the relationship between wintertime ENSO and subsequent East Asian summer rainfall. Climate Research, 84: 133-144.
[9] Wang, T.*, J.P. Miao, H.J. Wang, J.Q. Sun, 2021: Influence of Strong Tropical Volcanic Eruptions on Daily Temperature and Precipitation Extremes Across the Globe. Journal of Meteorological Research, 35 (3): 428-443.
[10] Fu, Y.H., Z.D. Lin, T. Wang, 2021: Simulated Relationship between Wintertime ENSO and East Asian Summer Rainfall: From CMIP3 to CMIP6. Advances in Atmospheric Sciences, 38 (2): 221-236.
[11] Wang, L.T., Y.Q. Gao, D. Guo, T. Wang, Y. Zhang, W. Hua, 2021: Impact of global sea surface temperature on the recent early winter Arctic tropospheric warming in coordinated large ensemble simulations. Atmospheric and Oceanic Science Letters, 14 (1), https://doi.org/10.1016/j.aosl.2020.100010.
[12] Yin, S.Y., T. Wang*, W. Hua, J.P. Miao, Y.Q. Gao, Y.H. Fu, D. Matei, E. Tyrlis, D. Chen, 2020: Mid-summer surface air temperature and its internal variability over China at 1.5° C and 2° C global warming. Advances in Climate Change Research, 11 (3): 185-197.
[13] Xu, H.N., T. Wang*, H.J. Wang, J.P. Miao, J.H. Chen, S.Q. Chen, 2020: The PMIP3 Simulated Climate Changes over Arid Central Asia during the Mid-Holocene and Last Glacial Maximum. Acta Geologica Sinica (English Edition), 94 (3): 725–742.
[14] Miao, J.P., T. Wang*, D. Chen, 2020: More Robust Changes in the East Asian Winter Monsoon from 1.5° C to 2.0° C Global Warming Targets. International Journal of Climatology, 40: 4731–4749, https://doi.org/10.1002/joc.6485.
[15] Hu, Y.Y., Y. Xia, Z.Y. Liu, Y. Wang, Z. Lu, T. Wang, 2020: Distorted Pacific-North American Teleconnection at the Last Glacial. Climate of the Past, 16: 199–209, https://doi.org/10.5194/cp-16-199-2020
[16] Miao, J.P., T. Wang*, 2020: Decadal variations of the East Asian winter monsoon in recent decades. Atmospheric Science Letters, 21 (4): e960.
[17] Miao, J.P., T. Wang*, H. J. Wang, 2020: Interdecadal variations of the East Asian winter monsoon in CMIP5 preindustrial simulations. Journal of Climate, 33 (2): 559-575, doi:10.1175/JCLI-D-19-0148.1.
[18] Liu, Y., Y. L. Zhu, H. J. Wang, Y. Q. Gao, J. Q. Sun, T. Wang, J. H. Ma, A. Yurova, F. Li, 2020: Role of autumn Arctic Sea ice in the subsequent summer precipitation variability over East Asia. International Journal of Climatoloty, 40 (2): 706-722, https://doi.org/10.1002/joc.6232.
[19] 陈发虎, 董广辉, 陈建徽, 郜永祺, 黄伟, 王涛, 陈圣乾, 侯居峙, 2019: 亚洲中部干旱区气候变化与丝路文明变迁研究:进展与问题, 地球科学进展, 34(6): 561-572. Chen F.H.,G.H. Dong,J.H. Chen,Y.Q. Gao, W. Huang, T. Wang, S. Q. Chen, and J. Z. Hou, 2019: Climate change and silk road civilization evolution in arid central Asia:Progress and issues, Advances in Earth Science, 2019, 34(6): 561-572.
[20] Koenigk, T., Y. Gao, G. Gastineau, N. Keenlyside, T. Nakamura, F. Ogawa, Y. Orsolini, V. Semenov, L. Suo, T. Tian, T. Wang, J. J. Wettstein, S. Yang, 2019: Impact of Arctic sea ice variations on winter temperature anomalies in northern hemispheric land areas, Climate Dynamics, 52 (5-6): 3111-3137, https://doi.org/10.1007/s00382-018-4305-1.
[21] Miao, J. P., T. Wang*, H. J. Wang, Y. L. Zhu, J. Q. Sun, 2018: Interdecadal weakening of the East Asian winter monsoon in the mid-1980s: the roles of external forcings, Journal of Climate, 31 (21), 8985-9000, doi:10.1175/JCLI-D-17-0868.1.
[22] Zhu, Y. L., H. J. Wang, T. Wang, D. Guo, 2018: Extreme spring cold spells in North China during1961–2014 and the evolving processes, Atmospheric and Oceanic Science Letters, 11 (5): 432-437, doi: 10.1080/16742834.2018.1514937.
[23] Ogawa, F., N. Keenlyside, Y. Q. Gao, T. Koenigk, S. Yang, L. L. Suo, T. Wang, G. Gastineau, T. Nakamura, H. N. Cheung, N. E. Omrani, J. Ukita, V. Semenov, 2018: Evaluating impacts of recent Arctic sea-ice loss on the northern hemisphere winter climate change, Geophysical Research Letters , 45: 3255-3263, doi: 10.1002/2017GL076502.
[24] Miao, J. P., T. Wang*, H. J. Wang, Y. Q. Gao, 2018: Influence of low-frequency solar forcing on the East Asian winter monsoon based on HadCM3 and observations, Advances in Atmospheric Sciences, 35: 1205-1215, doi: 10.1007/s00376-018-7229-0.
[25] Wang, T.*, J. P. Miao, J. Q. Sun, Y. H. Fu, 2018: Intensified East Asian summer monsoon and associated precipitation mode shift under the 1.5 °C global warming target, Advances in Climate Change Research, 9: 102-111, doi: 10.1016/j.accre.2017.12.002.
[26] Miao, J. P., T. Wang*, H. J. Wang, J. Q. Sun, 2018: Interannual weakening of the tropical Pacific Walker circulation due to strong tropical volcanism, Advances in Atmospheric Sciences, 35: 645-658, doi: 10.1007/s00376-017-7134-y.
[27] Wang, T.*, D. Guo, Y. Q. Gao, H. J. Wang, F. Zheng, Y. L. Zhu, J. P. Miao, Y. Y. Hu, 2018: Modulation of ENSO evolution by strong tropical volcanic eruptions, Climate Dynamics, 51: 2433–2453. https://doi.org/10.1007/s00382-017-4021-2.
[28] Wang, T.*, J. P. Miao, 2018: Twentieth-century Pacific Decadal Oscillation simulated by CMIP5 coupled models, Atmospheric and Oceanic Science Letters, 11: 94-101.
[29] Zhu, Y.L., T. Wang, H. J. Wang, 2016: Relative contribution of the anthropogenic forcing and natural variability to the interdecadal shift of climate during the late 1970s and 1990s, Science Bulletin, 61: 416-424.
[30] Zhu, Y. L., T. Wang, and J. H. Ma, 2016: Influence of internal decadal variability on the summer rainfall in eastern China as simulated by CCSM4, Advances in Atmospheric Sciences, 33: 706-714
[31] Zhu, Y. L., and T. Wang, 2016: The relationship between the Arctic Oscillation and ENSO as simulated by CCSM4, Atmospheric and Oceanic Science Letters, 9: 198-203.
[32] Miao, J. P., T. Wang*, Y. L. Zhu, J. Z. Min, H. J. Wang, D. Guo, 2016: Response of the East Asian winter monsoon to strong tropical volcanic eruptions, Journal of Climate, 29: 5041-5057.
[33] Zhu, Y. L., H. J. Wang, J. H. Ma, T. Wang, J. Q. Sun, 2015: Contribution of the phase transition of Pacific Decadal Oscillation to the late 1990s’ shift in East China summer rainfall, Journal of Geophysical Research: Atmospheres, 120: 8817-8827.
[34] Yu, E.T., T. Wang, Y. Q. Gao, and W. L. Xiang, 2014: Precipitation Pattern of the Mid-Holocene Simulated by a High-Resolution Regional Climate Model, Advances in Atmospheric Sciences, 31: 962-971.
[35] Ge, J.Y., Z. T. Guo, D. Zhao, Y. Zhang, T. Wang, L. Yi, C. L. Deng, 2014: Spatial variations in paleowind direction during the last glacial period in north China reconstructed from variations in the anisotropy of magnetic susceptibility of loess deposits, Tectonophysics, 629: 353-361.
[36] Wang, T.*, and H.J. Wang, 2013: Mid-Holocene Asian summer climate and its responses to cold ocean surface simulated in the PMIP2 OAGCMs experiments, Journal of Geophysical Research: Atmospheres, 118: 4117-4128.
[37] Wang, T.*, Y. Liu, and W. Huang, 2013: Last Glacial Maximum Sea Surface Temperatures: A Model-Data Comparison, Atmospheric and Oceanic Science Letters, 6: 233-239.
[38] Wang, T., H. J. Wang, O. H. Otterå, Y. Q. Gao, L. L. Suo, T. Furevik, and L. Yu, 2013: Anthropogenic agent implicated as a prime driver of shift in precipitation in eastern China in the late 1970s, Atmospheric Chemistry and Physics, 13: 12433-12450.
[39] Wang, T.*, O.H. Otterå, Y.Q. Gao, and H.J. Wang, 2012: The response of the North Pacific Decadal Variability to strong tropical volcanic eruptions, Climate Dynamics, 39: 2917-2936.
[40] Jiang, D., X. Lang, Z. Tian, and T. Wang, 2012: Considerable model–data mismatch in temperature over China during the mid-Holocene: Results of PMIP simulations, Journal of Climate, 25: 4135-4153.
[41] Wang, T.*, H.J. Wang, and D.B. Jiang, 2010: Mid-Holocene East Asian summer climate as simulated by the PMIP2 models, Palaeogeography, Palaeoclimatology, Palaeoecology, 288: 93-102.
[42] 王会军, 王涛, 姜大膀, 富元海, 2009: 我国气候变化将比模式预期的小吗? 第四纪研究, 29: 1011-1014.
[43] 王涛, 徐鸣洁, 王良书, 刘绍文, 胡旭芝, 2007: 鄂尔多斯及邻区航磁异常特征及其大地构造意义, 地球物理学报, 50(1), 163-170. Wang, T., M. J. Xu, L. S. Wang, S. W. Liu, and X. Z. Hu, 2007: Aeromagnetic anomaly analysis of Ordos and adjacent regions and its tectonic implications. Chinese Journal of Geophysics, 50: 158-166.